Mercury enrichment and Hg isotopes in Cretaceous-Paleogene boundary successions: Links to volcanism and palaeoenvironmental impacts
- Autores
- Sial, A. N.; Chen, Jiubin; Lacerda, L. D.; Frei, R.; Tewari, V. C.; Pandit, M. K.; Gaucher, C.; Ferreira, V. P.; Cirilli, S.; Peralta, Silvio Heriberto; Korte, C.; Barbosa, J. A.; Pereira, N. S.
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We investigate the use of Hg as a proxy for volcanism by studying four distal and two proximal sections in relation to the Deccan volcanic center, straddling the Cretaceous-Paleogene (KPg) boundary at (a) Højerup (Denmark), Bottaccione and Padriciano (Italy), (b) Meghalaya and Jhilmili (India), and (c) Bajada del Jagüel (Argentina). Hg sequestration by organic matter results in constant Hg/TOC ratio and linear correlation between Hg content of the sediments and total organic carbon (TOC).Elevated Hg concentrations that deviate from this linear relationship represent most likely true Hg anomalies and these notable Hg/TOC spikes (all TOC <1%) are found in the Meghalaya, Bottaccione and Højerup sections within the CF2 planktic foraminiferal biozone (spike I), at the KPg boundary (spike II), and within the P1a planktic foraminiferal subzone (spike III). Spike III occurs also in the Jhilmili section. No clear correlation between Hg/TOC and Al2O3 exists in any of the studied sections. The Hg anomalies probably result from strong volcanic episodes of the Deccan phase-2 (started 250 kyr before the KPg boundary and lasted for 750 kyr) that exhaled sulfuric aerosols, carbon dioxide and other toxic agents which reached a critical threshold, represented in true Hg enrichments in the paleoenvironments. The possibility that Hg enrichments resulted from anoxia scavenging on the seafloor and penetration downward into sediments is not supported in the stratigraphic record of Mo/Al ratios redox proxy.Hg isotopes were analyzed in samples from all KPg boundary sections in this study and from Bidart, France, the latter for comparison. Hg isotopes yielded δ202Hg values ranging from -1 to -2‰ and δ201Hg signatures from 0 to 0.05‰ (spike II in Højerup, Bottaccione and Meghalaya KPg boundary layers) consistent with volcanic emission of Hg (0 to -2‰). The δ202Hg in spike I in Meghalaya and Padriciano and spike III in Jhilmili is consistent with volcanic emission of Hg. Two samples from Bajada del Jagüel and four from Bidart, however, display isotope signals compatible with volcanic emission/chondrite Hg. The results of three other samples are characteristic for reworked sediment, soil and/or peat. Most of the data show small positive Δ201Hg, in favor of long-term atmospheric transport prior to deposition, supporting a volcanic origin for the Hg. The present study broadens, therefore, the potential use of Hg as stratigraphic marker and, moreover, confirms that in the critical KPg transition, Hg was enriched in paleoenvironments at three distinct stages during the Deccan phase-2.
Fil: Sial, A. N.. Universidade Federal de Pernambuco; Brasil
Fil: Chen, Jiubin. Chinese Academy of Sciences; República de China
Fil: Lacerda, L. D.. Universidade Federal do Ceará; Brasil
Fil: Frei, R.. Universidad de Copenhagen; Dinamarca
Fil: Tewari, V. C.. Sikkim University; India
Fil: Pandit, M. K.. Rajasthan University; India
Fil: Gaucher, C.. Universidad de la República. Facultad de Ciencias; Uruguay
Fil: Ferreira, V. P.. Universidade Federal de Pernambuco; Brasil
Fil: Cirilli, S.. Università di Perugia; Italia
Fil: Peralta, Silvio Heriberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Centro de Investigaciones de la Geosfera y Biosfera. Universidad Nacional de San Juan. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones de la Geosfera y Biosfera; Argentina
Fil: Korte, C.. Universidad de Copenhagen; Dinamarca
Fil: Barbosa, J. A.. Universidade Federal de Pernambuco; Brasil
Fil: Pereira, N. S.. Universidade do Estado da Bahia; Brasil - Materia
-
Chemostratigraphy
Cretaceous-Paleogene Boundary
Hg Isotopes
Molybdenum
Total Organic Carbon - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/61198
Ver los metadatos del registro completo
id |
CONICETDig_1ff4e5a3ac8de4755b9db20406256055 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/61198 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Mercury enrichment and Hg isotopes in Cretaceous-Paleogene boundary successions: Links to volcanism and palaeoenvironmental impactsSial, A. N.Chen, JiubinLacerda, L. D.Frei, R.Tewari, V. C.Pandit, M. K.Gaucher, C.Ferreira, V. P.Cirilli, S.Peralta, Silvio HeribertoKorte, C.Barbosa, J. A.Pereira, N. S.ChemostratigraphyCretaceous-Paleogene BoundaryHg IsotopesMolybdenumTotal Organic Carbonhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1We investigate the use of Hg as a proxy for volcanism by studying four distal and two proximal sections in relation to the Deccan volcanic center, straddling the Cretaceous-Paleogene (KPg) boundary at (a) Højerup (Denmark), Bottaccione and Padriciano (Italy), (b) Meghalaya and Jhilmili (India), and (c) Bajada del Jagüel (Argentina). Hg sequestration by organic matter results in constant Hg/TOC ratio and linear correlation between Hg content of the sediments and total organic carbon (TOC).Elevated Hg concentrations that deviate from this linear relationship represent most likely true Hg anomalies and these notable Hg/TOC spikes (all TOC <1%) are found in the Meghalaya, Bottaccione and Højerup sections within the CF2 planktic foraminiferal biozone (spike I), at the KPg boundary (spike II), and within the P1a planktic foraminiferal subzone (spike III). Spike III occurs also in the Jhilmili section. No clear correlation between Hg/TOC and Al2O3 exists in any of the studied sections. The Hg anomalies probably result from strong volcanic episodes of the Deccan phase-2 (started 250 kyr before the KPg boundary and lasted for 750 kyr) that exhaled sulfuric aerosols, carbon dioxide and other toxic agents which reached a critical threshold, represented in true Hg enrichments in the paleoenvironments. The possibility that Hg enrichments resulted from anoxia scavenging on the seafloor and penetration downward into sediments is not supported in the stratigraphic record of Mo/Al ratios redox proxy.Hg isotopes were analyzed in samples from all KPg boundary sections in this study and from Bidart, France, the latter for comparison. Hg isotopes yielded δ202Hg values ranging from -1 to -2‰ and δ201Hg signatures from 0 to 0.05‰ (spike II in Højerup, Bottaccione and Meghalaya KPg boundary layers) consistent with volcanic emission of Hg (0 to -2‰). The δ202Hg in spike I in Meghalaya and Padriciano and spike III in Jhilmili is consistent with volcanic emission of Hg. Two samples from Bajada del Jagüel and four from Bidart, however, display isotope signals compatible with volcanic emission/chondrite Hg. The results of three other samples are characteristic for reworked sediment, soil and/or peat. Most of the data show small positive Δ201Hg, in favor of long-term atmospheric transport prior to deposition, supporting a volcanic origin for the Hg. The present study broadens, therefore, the potential use of Hg as stratigraphic marker and, moreover, confirms that in the critical KPg transition, Hg was enriched in paleoenvironments at three distinct stages during the Deccan phase-2.Fil: Sial, A. N.. Universidade Federal de Pernambuco; BrasilFil: Chen, Jiubin. Chinese Academy of Sciences; República de ChinaFil: Lacerda, L. D.. Universidade Federal do Ceará; BrasilFil: Frei, R.. Universidad de Copenhagen; DinamarcaFil: Tewari, V. C.. Sikkim University; IndiaFil: Pandit, M. K.. Rajasthan University; IndiaFil: Gaucher, C.. Universidad de la República. Facultad de Ciencias; UruguayFil: Ferreira, V. P.. Universidade Federal de Pernambuco; BrasilFil: Cirilli, S.. Università di Perugia; ItaliaFil: Peralta, Silvio Heriberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Centro de Investigaciones de la Geosfera y Biosfera. Universidad Nacional de San Juan. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones de la Geosfera y Biosfera; ArgentinaFil: Korte, C.. Universidad de Copenhagen; DinamarcaFil: Barbosa, J. A.. Universidade Federal de Pernambuco; BrasilFil: Pereira, N. S.. Universidade do Estado da Bahia; BrasilAcademic Press Ltd - Elsevier Science Ltd2016-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/61198Sial, A. N.; Chen, Jiubin; Lacerda, L. D.; Frei, R.; Tewari, V. C.; et al.; Mercury enrichment and Hg isotopes in Cretaceous-Paleogene boundary successions: Links to volcanism and palaeoenvironmental impacts; Academic Press Ltd - Elsevier Science Ltd; Cretaceous Research; 66; 11-2016; 60-810195-6671CONICET DigitalCONICETenghttps://ri.conicet.gov.ar/handle/11336/65802info:eu-repo/semantics/altIdentifier/doi/10.1016/j.cretres.2016.05.006info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0195667116300969info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:43:17Zoai:ri.conicet.gov.ar:11336/61198instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:43:17.902CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Mercury enrichment and Hg isotopes in Cretaceous-Paleogene boundary successions: Links to volcanism and palaeoenvironmental impacts |
title |
Mercury enrichment and Hg isotopes in Cretaceous-Paleogene boundary successions: Links to volcanism and palaeoenvironmental impacts |
spellingShingle |
Mercury enrichment and Hg isotopes in Cretaceous-Paleogene boundary successions: Links to volcanism and palaeoenvironmental impacts Sial, A. N. Chemostratigraphy Cretaceous-Paleogene Boundary Hg Isotopes Molybdenum Total Organic Carbon |
title_short |
Mercury enrichment and Hg isotopes in Cretaceous-Paleogene boundary successions: Links to volcanism and palaeoenvironmental impacts |
title_full |
Mercury enrichment and Hg isotopes in Cretaceous-Paleogene boundary successions: Links to volcanism and palaeoenvironmental impacts |
title_fullStr |
Mercury enrichment and Hg isotopes in Cretaceous-Paleogene boundary successions: Links to volcanism and palaeoenvironmental impacts |
title_full_unstemmed |
Mercury enrichment and Hg isotopes in Cretaceous-Paleogene boundary successions: Links to volcanism and palaeoenvironmental impacts |
title_sort |
Mercury enrichment and Hg isotopes in Cretaceous-Paleogene boundary successions: Links to volcanism and palaeoenvironmental impacts |
dc.creator.none.fl_str_mv |
Sial, A. N. Chen, Jiubin Lacerda, L. D. Frei, R. Tewari, V. C. Pandit, M. K. Gaucher, C. Ferreira, V. P. Cirilli, S. Peralta, Silvio Heriberto Korte, C. Barbosa, J. A. Pereira, N. S. |
author |
Sial, A. N. |
author_facet |
Sial, A. N. Chen, Jiubin Lacerda, L. D. Frei, R. Tewari, V. C. Pandit, M. K. Gaucher, C. Ferreira, V. P. Cirilli, S. Peralta, Silvio Heriberto Korte, C. Barbosa, J. A. Pereira, N. S. |
author_role |
author |
author2 |
Chen, Jiubin Lacerda, L. D. Frei, R. Tewari, V. C. Pandit, M. K. Gaucher, C. Ferreira, V. P. Cirilli, S. Peralta, Silvio Heriberto Korte, C. Barbosa, J. A. Pereira, N. S. |
author2_role |
author author author author author author author author author author author author |
dc.subject.none.fl_str_mv |
Chemostratigraphy Cretaceous-Paleogene Boundary Hg Isotopes Molybdenum Total Organic Carbon |
topic |
Chemostratigraphy Cretaceous-Paleogene Boundary Hg Isotopes Molybdenum Total Organic Carbon |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We investigate the use of Hg as a proxy for volcanism by studying four distal and two proximal sections in relation to the Deccan volcanic center, straddling the Cretaceous-Paleogene (KPg) boundary at (a) Højerup (Denmark), Bottaccione and Padriciano (Italy), (b) Meghalaya and Jhilmili (India), and (c) Bajada del Jagüel (Argentina). Hg sequestration by organic matter results in constant Hg/TOC ratio and linear correlation between Hg content of the sediments and total organic carbon (TOC).Elevated Hg concentrations that deviate from this linear relationship represent most likely true Hg anomalies and these notable Hg/TOC spikes (all TOC <1%) are found in the Meghalaya, Bottaccione and Højerup sections within the CF2 planktic foraminiferal biozone (spike I), at the KPg boundary (spike II), and within the P1a planktic foraminiferal subzone (spike III). Spike III occurs also in the Jhilmili section. No clear correlation between Hg/TOC and Al2O3 exists in any of the studied sections. The Hg anomalies probably result from strong volcanic episodes of the Deccan phase-2 (started 250 kyr before the KPg boundary and lasted for 750 kyr) that exhaled sulfuric aerosols, carbon dioxide and other toxic agents which reached a critical threshold, represented in true Hg enrichments in the paleoenvironments. The possibility that Hg enrichments resulted from anoxia scavenging on the seafloor and penetration downward into sediments is not supported in the stratigraphic record of Mo/Al ratios redox proxy.Hg isotopes were analyzed in samples from all KPg boundary sections in this study and from Bidart, France, the latter for comparison. Hg isotopes yielded δ202Hg values ranging from -1 to -2‰ and δ201Hg signatures from 0 to 0.05‰ (spike II in Højerup, Bottaccione and Meghalaya KPg boundary layers) consistent with volcanic emission of Hg (0 to -2‰). The δ202Hg in spike I in Meghalaya and Padriciano and spike III in Jhilmili is consistent with volcanic emission of Hg. Two samples from Bajada del Jagüel and four from Bidart, however, display isotope signals compatible with volcanic emission/chondrite Hg. The results of three other samples are characteristic for reworked sediment, soil and/or peat. Most of the data show small positive Δ201Hg, in favor of long-term atmospheric transport prior to deposition, supporting a volcanic origin for the Hg. The present study broadens, therefore, the potential use of Hg as stratigraphic marker and, moreover, confirms that in the critical KPg transition, Hg was enriched in paleoenvironments at three distinct stages during the Deccan phase-2. Fil: Sial, A. N.. Universidade Federal de Pernambuco; Brasil Fil: Chen, Jiubin. Chinese Academy of Sciences; República de China Fil: Lacerda, L. D.. Universidade Federal do Ceará; Brasil Fil: Frei, R.. Universidad de Copenhagen; Dinamarca Fil: Tewari, V. C.. Sikkim University; India Fil: Pandit, M. K.. Rajasthan University; India Fil: Gaucher, C.. Universidad de la República. Facultad de Ciencias; Uruguay Fil: Ferreira, V. P.. Universidade Federal de Pernambuco; Brasil Fil: Cirilli, S.. Università di Perugia; Italia Fil: Peralta, Silvio Heriberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Centro de Investigaciones de la Geosfera y Biosfera. Universidad Nacional de San Juan. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones de la Geosfera y Biosfera; Argentina Fil: Korte, C.. Universidad de Copenhagen; Dinamarca Fil: Barbosa, J. A.. Universidade Federal de Pernambuco; Brasil Fil: Pereira, N. S.. Universidade do Estado da Bahia; Brasil |
description |
We investigate the use of Hg as a proxy for volcanism by studying four distal and two proximal sections in relation to the Deccan volcanic center, straddling the Cretaceous-Paleogene (KPg) boundary at (a) Højerup (Denmark), Bottaccione and Padriciano (Italy), (b) Meghalaya and Jhilmili (India), and (c) Bajada del Jagüel (Argentina). Hg sequestration by organic matter results in constant Hg/TOC ratio and linear correlation between Hg content of the sediments and total organic carbon (TOC).Elevated Hg concentrations that deviate from this linear relationship represent most likely true Hg anomalies and these notable Hg/TOC spikes (all TOC <1%) are found in the Meghalaya, Bottaccione and Højerup sections within the CF2 planktic foraminiferal biozone (spike I), at the KPg boundary (spike II), and within the P1a planktic foraminiferal subzone (spike III). Spike III occurs also in the Jhilmili section. No clear correlation between Hg/TOC and Al2O3 exists in any of the studied sections. The Hg anomalies probably result from strong volcanic episodes of the Deccan phase-2 (started 250 kyr before the KPg boundary and lasted for 750 kyr) that exhaled sulfuric aerosols, carbon dioxide and other toxic agents which reached a critical threshold, represented in true Hg enrichments in the paleoenvironments. The possibility that Hg enrichments resulted from anoxia scavenging on the seafloor and penetration downward into sediments is not supported in the stratigraphic record of Mo/Al ratios redox proxy.Hg isotopes were analyzed in samples from all KPg boundary sections in this study and from Bidart, France, the latter for comparison. Hg isotopes yielded δ202Hg values ranging from -1 to -2‰ and δ201Hg signatures from 0 to 0.05‰ (spike II in Højerup, Bottaccione and Meghalaya KPg boundary layers) consistent with volcanic emission of Hg (0 to -2‰). The δ202Hg in spike I in Meghalaya and Padriciano and spike III in Jhilmili is consistent with volcanic emission of Hg. Two samples from Bajada del Jagüel and four from Bidart, however, display isotope signals compatible with volcanic emission/chondrite Hg. The results of three other samples are characteristic for reworked sediment, soil and/or peat. Most of the data show small positive Δ201Hg, in favor of long-term atmospheric transport prior to deposition, supporting a volcanic origin for the Hg. The present study broadens, therefore, the potential use of Hg as stratigraphic marker and, moreover, confirms that in the critical KPg transition, Hg was enriched in paleoenvironments at three distinct stages during the Deccan phase-2. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/61198 Sial, A. N.; Chen, Jiubin; Lacerda, L. D.; Frei, R.; Tewari, V. C.; et al.; Mercury enrichment and Hg isotopes in Cretaceous-Paleogene boundary successions: Links to volcanism and palaeoenvironmental impacts; Academic Press Ltd - Elsevier Science Ltd; Cretaceous Research; 66; 11-2016; 60-81 0195-6671 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/61198 |
identifier_str_mv |
Sial, A. N.; Chen, Jiubin; Lacerda, L. D.; Frei, R.; Tewari, V. C.; et al.; Mercury enrichment and Hg isotopes in Cretaceous-Paleogene boundary successions: Links to volcanism and palaeoenvironmental impacts; Academic Press Ltd - Elsevier Science Ltd; Cretaceous Research; 66; 11-2016; 60-81 0195-6671 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://ri.conicet.gov.ar/handle/11336/65802 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.cretres.2016.05.006 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0195667116300969 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Academic Press Ltd - Elsevier Science Ltd |
publisher.none.fl_str_mv |
Academic Press Ltd - Elsevier Science Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268591276163072 |
score |
13.13397 |