Fertilization defects in sperm from Cysteine-rich secretory protein 2 (Crisp2) knockout mice: Implications for fertility disorders

Autores
Brukman, Nicolás Gastón; Miyata, H.; Torres, P.; Lombardo, D.; Caramelo, Julio Javier; Ikawa, M.; Da Ros, Vanina Gabriela; Cuasnicu, Patricia Sara
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
STUDY HYPOTHESIS We hypothesize that fertility disorders in patients with aberrant expression of Cysteine-RIch Secretory Protein 2 (CRISP2) could be linked to the proposed functional role of this protein in fertilization. STUDY FINDING Our in vivo and in vitro observations reveal that Crisp2-knockout mice exhibit significant defects in fertility-associated parameters under demanding conditions, as well as deficiencies in sperm fertilizing ability, hyperactivation development and intracellular Ca2+ regulation. WHAT IS KNOWN ALREADY Testicular CRISP2 is present in mature sperm and has been proposed to participate in gamete fusion in both humans and rodents. Interestingly, evidence in humans shows that aberrant expression of CRISP2 is associated with male infertility. STUDY DESIGN, SAMPLES/MATERIALS, METHODS A mouse line carrying a deletion in the sixth exon of the Crisp2 gene was generated. The analyses of the reproductive phenotype of Crisp2−/− adult males included the evaluation of their fertility before and after being subjected to unilateral vasectomy, in vivo fertilization rates obtained after mating with either estrus or superovulated females, in vitro sperm fertilizing ability and different sperm functional parameters associated with capacitation such as tyrosine phosphorylation (by western blot), acrosome reaction (by Coomassie Blue staining), hyperactivation (by computer-assisted sperm analysis) and intracellular Ca2+ levels (by flow cytometry). MAIN RESULTS AND THE ROLE OF CHANCE Crisp2−/− males presented normal fertility and in vivo fertilization rates when mated with estrus females. However, the mutant mice showed clear defects in those reproductive parameters compared with controls under more demanding conditions, i.e. when subjected to unilateral vasectomy to reduce the number of ejaculated sperm (n = 5; P< 0.05), or when mated with hormone-treated females containing a high number of eggs in the ampulla (n ≥ 5; P< 0.01). In vitro fertilization studies revealed that Crisp2−/− sperm exhibited deficiencies to penetrate the egg vestments (i.e. cumulus oophorus and zona pellucida) and to fuse with the egg (n ≥ 6; P< 0.01). Consistent with this, Crisp2-null sperm showed lower levels of hyperactivation (n = 7; P< 0.05), a vigorous motility required for penetration of the egg coats, as well as a dysregulation in intracellular Ca2+ levels associated with capacitation (n = 5; P< 0.001). LIMITATIONS, REASONS FOR CAUTION The analysis of the possible mechanisms involved in fertility disorders in men with abnormal expression of CRISP2 was carried out in Crisp2 knockout mice due to the ethical and technical problems inherent to the use of human gametes for fertilization studies. WIDER IMPLICATIONS OF THE FINDINGS Our findings in mice showing that Crisp2−/− males exhibit fertility and fertilization defects under demanding conditions support fertilization defects in sperm as a mechanism underlying infertility in men with aberrant expression of CRISP2. Moreover, our observations in mice resemble the situation in humans where fertility disorders can or cannot be detected depending on the accumulation of own individual defects or the fertility status of the partner. Finally, the fact that reproductive defects in mice are masked by conventional mating highlights the need of using different experimental approaches to analyze male fertility. STUDY FUNDING AND COMPETING INTEREST(S) This study was supported by the World Health Organization (H9/TSA/037), the National Research Council of Argentina (PIP 2009-290), the National Agency for Scientific and Technological Promotion of Argentina (PICT 2011, 2023) and the Rene Baron Foundation to P.S.C. and by the MEXT of Japan to M.I. The authors declare that there are no conflicts of interest.
Fil: Brukman, Nicolás Gastón. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentina
Fil: Miyata, H.. Osaka Universty; Japón
Fil: Torres, P.. Universidad de Buenos Aires. Facultad de Ciencias Veterinarias; Argentina
Fil: Lombardo, D.. Universidad de Buenos Aires. Facultad de Ciencias Veterinarias; Argentina
Fil: Caramelo, Julio Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentina
Fil: Ikawa, M.. Osaka Universty; Japón
Fil: Da Ros, Vanina Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentina
Fil: Cuasnicu, Patricia Sara. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentina
Materia
Crisp
Fertility
Fertilization
Hyperactivation
Knockout Mice
Motility
Sperm
Testes
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/23465

id CONICETDig_1fc23f332ae090c4a6b3890e0cd41afe
oai_identifier_str oai:ri.conicet.gov.ar:11336/23465
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Fertilization defects in sperm from Cysteine-rich secretory protein 2 (Crisp2) knockout mice: Implications for fertility disordersBrukman, Nicolás GastónMiyata, H.Torres, P.Lombardo, D.Caramelo, Julio JavierIkawa, M.Da Ros, Vanina GabrielaCuasnicu, Patricia SaraCrispFertilityFertilizationHyperactivationKnockout MiceMotilitySpermTesteshttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1https://purl.org/becyt/ford/3.1https://purl.org/becyt/ford/3STUDY HYPOTHESIS We hypothesize that fertility disorders in patients with aberrant expression of Cysteine-RIch Secretory Protein 2 (CRISP2) could be linked to the proposed functional role of this protein in fertilization. STUDY FINDING Our in vivo and in vitro observations reveal that Crisp2-knockout mice exhibit significant defects in fertility-associated parameters under demanding conditions, as well as deficiencies in sperm fertilizing ability, hyperactivation development and intracellular Ca2+ regulation. WHAT IS KNOWN ALREADY Testicular CRISP2 is present in mature sperm and has been proposed to participate in gamete fusion in both humans and rodents. Interestingly, evidence in humans shows that aberrant expression of CRISP2 is associated with male infertility. STUDY DESIGN, SAMPLES/MATERIALS, METHODS A mouse line carrying a deletion in the sixth exon of the Crisp2 gene was generated. The analyses of the reproductive phenotype of Crisp2−/− adult males included the evaluation of their fertility before and after being subjected to unilateral vasectomy, in vivo fertilization rates obtained after mating with either estrus or superovulated females, in vitro sperm fertilizing ability and different sperm functional parameters associated with capacitation such as tyrosine phosphorylation (by western blot), acrosome reaction (by Coomassie Blue staining), hyperactivation (by computer-assisted sperm analysis) and intracellular Ca2+ levels (by flow cytometry). MAIN RESULTS AND THE ROLE OF CHANCE Crisp2−/− males presented normal fertility and in vivo fertilization rates when mated with estrus females. However, the mutant mice showed clear defects in those reproductive parameters compared with controls under more demanding conditions, i.e. when subjected to unilateral vasectomy to reduce the number of ejaculated sperm (n = 5; P< 0.05), or when mated with hormone-treated females containing a high number of eggs in the ampulla (n ≥ 5; P< 0.01). In vitro fertilization studies revealed that Crisp2−/− sperm exhibited deficiencies to penetrate the egg vestments (i.e. cumulus oophorus and zona pellucida) and to fuse with the egg (n ≥ 6; P< 0.01). Consistent with this, Crisp2-null sperm showed lower levels of hyperactivation (n = 7; P< 0.05), a vigorous motility required for penetration of the egg coats, as well as a dysregulation in intracellular Ca2+ levels associated with capacitation (n = 5; P< 0.001). LIMITATIONS, REASONS FOR CAUTION The analysis of the possible mechanisms involved in fertility disorders in men with abnormal expression of CRISP2 was carried out in Crisp2 knockout mice due to the ethical and technical problems inherent to the use of human gametes for fertilization studies. WIDER IMPLICATIONS OF THE FINDINGS Our findings in mice showing that Crisp2−/− males exhibit fertility and fertilization defects under demanding conditions support fertilization defects in sperm as a mechanism underlying infertility in men with aberrant expression of CRISP2. Moreover, our observations in mice resemble the situation in humans where fertility disorders can or cannot be detected depending on the accumulation of own individual defects or the fertility status of the partner. Finally, the fact that reproductive defects in mice are masked by conventional mating highlights the need of using different experimental approaches to analyze male fertility. STUDY FUNDING AND COMPETING INTEREST(S) This study was supported by the World Health Organization (H9/TSA/037), the National Research Council of Argentina (PIP 2009-290), the National Agency for Scientific and Technological Promotion of Argentina (PICT 2011, 2023) and the Rene Baron Foundation to P.S.C. and by the MEXT of Japan to M.I. The authors declare that there are no conflicts of interest.Fil: Brukman, Nicolás Gastón. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Miyata, H.. Osaka Universty; JapónFil: Torres, P.. Universidad de Buenos Aires. Facultad de Ciencias Veterinarias; ArgentinaFil: Lombardo, D.. Universidad de Buenos Aires. Facultad de Ciencias Veterinarias; ArgentinaFil: Caramelo, Julio Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Ikawa, M.. Osaka Universty; JapónFil: Da Ros, Vanina Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Cuasnicu, Patricia Sara. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaOxford University Press2016-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/23465Brukman, Nicolás Gastón; Miyata, H.; Torres, P.; Lombardo, D.; Caramelo, Julio Javier; et al.; Fertilization defects in sperm from Cysteine-rich secretory protein 2 (Crisp2) knockout mice: Implications for fertility disorders; Oxford University Press; Molecular Human Reproduction; 22; 4; 4-2016; 240-2511360-99471460-2407CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/molehr/article-lookup/doi/10.1093/molehr/gaw005info:eu-repo/semantics/altIdentifier/doi/10.1093/molehr/gaw005info:eu-repo/semantics/altIdentifier/pmid/26786179info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:37:52Zoai:ri.conicet.gov.ar:11336/23465instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:37:52.379CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Fertilization defects in sperm from Cysteine-rich secretory protein 2 (Crisp2) knockout mice: Implications for fertility disorders
title Fertilization defects in sperm from Cysteine-rich secretory protein 2 (Crisp2) knockout mice: Implications for fertility disorders
spellingShingle Fertilization defects in sperm from Cysteine-rich secretory protein 2 (Crisp2) knockout mice: Implications for fertility disorders
Brukman, Nicolás Gastón
Crisp
Fertility
Fertilization
Hyperactivation
Knockout Mice
Motility
Sperm
Testes
title_short Fertilization defects in sperm from Cysteine-rich secretory protein 2 (Crisp2) knockout mice: Implications for fertility disorders
title_full Fertilization defects in sperm from Cysteine-rich secretory protein 2 (Crisp2) knockout mice: Implications for fertility disorders
title_fullStr Fertilization defects in sperm from Cysteine-rich secretory protein 2 (Crisp2) knockout mice: Implications for fertility disorders
title_full_unstemmed Fertilization defects in sperm from Cysteine-rich secretory protein 2 (Crisp2) knockout mice: Implications for fertility disorders
title_sort Fertilization defects in sperm from Cysteine-rich secretory protein 2 (Crisp2) knockout mice: Implications for fertility disorders
dc.creator.none.fl_str_mv Brukman, Nicolás Gastón
Miyata, H.
Torres, P.
Lombardo, D.
Caramelo, Julio Javier
Ikawa, M.
Da Ros, Vanina Gabriela
Cuasnicu, Patricia Sara
author Brukman, Nicolás Gastón
author_facet Brukman, Nicolás Gastón
Miyata, H.
Torres, P.
Lombardo, D.
Caramelo, Julio Javier
Ikawa, M.
Da Ros, Vanina Gabriela
Cuasnicu, Patricia Sara
author_role author
author2 Miyata, H.
Torres, P.
Lombardo, D.
Caramelo, Julio Javier
Ikawa, M.
Da Ros, Vanina Gabriela
Cuasnicu, Patricia Sara
author2_role author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Crisp
Fertility
Fertilization
Hyperactivation
Knockout Mice
Motility
Sperm
Testes
topic Crisp
Fertility
Fertilization
Hyperactivation
Knockout Mice
Motility
Sperm
Testes
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
https://purl.org/becyt/ford/3.1
https://purl.org/becyt/ford/3
dc.description.none.fl_txt_mv STUDY HYPOTHESIS We hypothesize that fertility disorders in patients with aberrant expression of Cysteine-RIch Secretory Protein 2 (CRISP2) could be linked to the proposed functional role of this protein in fertilization. STUDY FINDING Our in vivo and in vitro observations reveal that Crisp2-knockout mice exhibit significant defects in fertility-associated parameters under demanding conditions, as well as deficiencies in sperm fertilizing ability, hyperactivation development and intracellular Ca2+ regulation. WHAT IS KNOWN ALREADY Testicular CRISP2 is present in mature sperm and has been proposed to participate in gamete fusion in both humans and rodents. Interestingly, evidence in humans shows that aberrant expression of CRISP2 is associated with male infertility. STUDY DESIGN, SAMPLES/MATERIALS, METHODS A mouse line carrying a deletion in the sixth exon of the Crisp2 gene was generated. The analyses of the reproductive phenotype of Crisp2−/− adult males included the evaluation of their fertility before and after being subjected to unilateral vasectomy, in vivo fertilization rates obtained after mating with either estrus or superovulated females, in vitro sperm fertilizing ability and different sperm functional parameters associated with capacitation such as tyrosine phosphorylation (by western blot), acrosome reaction (by Coomassie Blue staining), hyperactivation (by computer-assisted sperm analysis) and intracellular Ca2+ levels (by flow cytometry). MAIN RESULTS AND THE ROLE OF CHANCE Crisp2−/− males presented normal fertility and in vivo fertilization rates when mated with estrus females. However, the mutant mice showed clear defects in those reproductive parameters compared with controls under more demanding conditions, i.e. when subjected to unilateral vasectomy to reduce the number of ejaculated sperm (n = 5; P< 0.05), or when mated with hormone-treated females containing a high number of eggs in the ampulla (n ≥ 5; P< 0.01). In vitro fertilization studies revealed that Crisp2−/− sperm exhibited deficiencies to penetrate the egg vestments (i.e. cumulus oophorus and zona pellucida) and to fuse with the egg (n ≥ 6; P< 0.01). Consistent with this, Crisp2-null sperm showed lower levels of hyperactivation (n = 7; P< 0.05), a vigorous motility required for penetration of the egg coats, as well as a dysregulation in intracellular Ca2+ levels associated with capacitation (n = 5; P< 0.001). LIMITATIONS, REASONS FOR CAUTION The analysis of the possible mechanisms involved in fertility disorders in men with abnormal expression of CRISP2 was carried out in Crisp2 knockout mice due to the ethical and technical problems inherent to the use of human gametes for fertilization studies. WIDER IMPLICATIONS OF THE FINDINGS Our findings in mice showing that Crisp2−/− males exhibit fertility and fertilization defects under demanding conditions support fertilization defects in sperm as a mechanism underlying infertility in men with aberrant expression of CRISP2. Moreover, our observations in mice resemble the situation in humans where fertility disorders can or cannot be detected depending on the accumulation of own individual defects or the fertility status of the partner. Finally, the fact that reproductive defects in mice are masked by conventional mating highlights the need of using different experimental approaches to analyze male fertility. STUDY FUNDING AND COMPETING INTEREST(S) This study was supported by the World Health Organization (H9/TSA/037), the National Research Council of Argentina (PIP 2009-290), the National Agency for Scientific and Technological Promotion of Argentina (PICT 2011, 2023) and the Rene Baron Foundation to P.S.C. and by the MEXT of Japan to M.I. The authors declare that there are no conflicts of interest.
Fil: Brukman, Nicolás Gastón. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentina
Fil: Miyata, H.. Osaka Universty; Japón
Fil: Torres, P.. Universidad de Buenos Aires. Facultad de Ciencias Veterinarias; Argentina
Fil: Lombardo, D.. Universidad de Buenos Aires. Facultad de Ciencias Veterinarias; Argentina
Fil: Caramelo, Julio Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentina
Fil: Ikawa, M.. Osaka Universty; Japón
Fil: Da Ros, Vanina Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentina
Fil: Cuasnicu, Patricia Sara. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentina
description STUDY HYPOTHESIS We hypothesize that fertility disorders in patients with aberrant expression of Cysteine-RIch Secretory Protein 2 (CRISP2) could be linked to the proposed functional role of this protein in fertilization. STUDY FINDING Our in vivo and in vitro observations reveal that Crisp2-knockout mice exhibit significant defects in fertility-associated parameters under demanding conditions, as well as deficiencies in sperm fertilizing ability, hyperactivation development and intracellular Ca2+ regulation. WHAT IS KNOWN ALREADY Testicular CRISP2 is present in mature sperm and has been proposed to participate in gamete fusion in both humans and rodents. Interestingly, evidence in humans shows that aberrant expression of CRISP2 is associated with male infertility. STUDY DESIGN, SAMPLES/MATERIALS, METHODS A mouse line carrying a deletion in the sixth exon of the Crisp2 gene was generated. The analyses of the reproductive phenotype of Crisp2−/− adult males included the evaluation of their fertility before and after being subjected to unilateral vasectomy, in vivo fertilization rates obtained after mating with either estrus or superovulated females, in vitro sperm fertilizing ability and different sperm functional parameters associated with capacitation such as tyrosine phosphorylation (by western blot), acrosome reaction (by Coomassie Blue staining), hyperactivation (by computer-assisted sperm analysis) and intracellular Ca2+ levels (by flow cytometry). MAIN RESULTS AND THE ROLE OF CHANCE Crisp2−/− males presented normal fertility and in vivo fertilization rates when mated with estrus females. However, the mutant mice showed clear defects in those reproductive parameters compared with controls under more demanding conditions, i.e. when subjected to unilateral vasectomy to reduce the number of ejaculated sperm (n = 5; P< 0.05), or when mated with hormone-treated females containing a high number of eggs in the ampulla (n ≥ 5; P< 0.01). In vitro fertilization studies revealed that Crisp2−/− sperm exhibited deficiencies to penetrate the egg vestments (i.e. cumulus oophorus and zona pellucida) and to fuse with the egg (n ≥ 6; P< 0.01). Consistent with this, Crisp2-null sperm showed lower levels of hyperactivation (n = 7; P< 0.05), a vigorous motility required for penetration of the egg coats, as well as a dysregulation in intracellular Ca2+ levels associated with capacitation (n = 5; P< 0.001). LIMITATIONS, REASONS FOR CAUTION The analysis of the possible mechanisms involved in fertility disorders in men with abnormal expression of CRISP2 was carried out in Crisp2 knockout mice due to the ethical and technical problems inherent to the use of human gametes for fertilization studies. WIDER IMPLICATIONS OF THE FINDINGS Our findings in mice showing that Crisp2−/− males exhibit fertility and fertilization defects under demanding conditions support fertilization defects in sperm as a mechanism underlying infertility in men with aberrant expression of CRISP2. Moreover, our observations in mice resemble the situation in humans where fertility disorders can or cannot be detected depending on the accumulation of own individual defects or the fertility status of the partner. Finally, the fact that reproductive defects in mice are masked by conventional mating highlights the need of using different experimental approaches to analyze male fertility. STUDY FUNDING AND COMPETING INTEREST(S) This study was supported by the World Health Organization (H9/TSA/037), the National Research Council of Argentina (PIP 2009-290), the National Agency for Scientific and Technological Promotion of Argentina (PICT 2011, 2023) and the Rene Baron Foundation to P.S.C. and by the MEXT of Japan to M.I. The authors declare that there are no conflicts of interest.
publishDate 2016
dc.date.none.fl_str_mv 2016-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/23465
Brukman, Nicolás Gastón; Miyata, H.; Torres, P.; Lombardo, D.; Caramelo, Julio Javier; et al.; Fertilization defects in sperm from Cysteine-rich secretory protein 2 (Crisp2) knockout mice: Implications for fertility disorders; Oxford University Press; Molecular Human Reproduction; 22; 4; 4-2016; 240-251
1360-9947
1460-2407
CONICET Digital
CONICET
url http://hdl.handle.net/11336/23465
identifier_str_mv Brukman, Nicolás Gastón; Miyata, H.; Torres, P.; Lombardo, D.; Caramelo, Julio Javier; et al.; Fertilization defects in sperm from Cysteine-rich secretory protein 2 (Crisp2) knockout mice: Implications for fertility disorders; Oxford University Press; Molecular Human Reproduction; 22; 4; 4-2016; 240-251
1360-9947
1460-2407
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/molehr/article-lookup/doi/10.1093/molehr/gaw005
info:eu-repo/semantics/altIdentifier/doi/10.1093/molehr/gaw005
info:eu-repo/semantics/altIdentifier/pmid/26786179
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Oxford University Press
publisher.none.fl_str_mv Oxford University Press
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846082854330564608
score 13.22299