Bone-repair properties of biodegradable hydroxyapatite nano-rod superstructures

Autores
D'elía, Noelia Laura; Mathieu, Colleen; Hoemann, Caroline D.; Laiuppa, Juan Andrés; Santillan, Graciela Edith; Messina, Paula Veronica
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Nano-hydroxyapatite (nano-HAp) materials show an analogous chemical composition to the biogenic mineral components of calcified tissues and depending on their topography they may mimic the specific arrangement of the crystals in bone. In this work, we have evaluated the potential of four synthesized nano-HAp superstructures for the in vitro conditions of bone-repair. Experiments are underway to investigate the effects of the material microstructure, surface roughness and hydrophilicity on their osseo-integration, osteo-conduction and osteo-induction abilities. Materials were tested in the presence of both, rat primary osteoblasts and rabbit mesenchymal stem cells. The following aspects are discussed: (i) cytotoxicity and material degradation; (ii) rat osteoblast spreading, proliferation and differentiation; and (iii) rabbit mesenchymal stem cell adhesion on nano-HAp and nano-HAp/collagen type I coatings. We effectively prepared a material based on biomimetic HAp nano-rods displaying the appropriate surface topography, hydrophilicity and degradation properties to induce the in vitro desired cellular responses for bone bonding and healing. Cells seeded on the selected material readily attached, proliferated and differentiated, as confirmed by cell viability, mitochondrial metabolic activity, alkaline phosphatase (ALP) activity and cytoskeletal integrity analysis by immunofluorescence localization of alpha-smooth muscle actin (α-SMA) protein. These results highlight the influence of material´s surface characteristics to determine their tissue regeneration potential and their future use in engineering osteogenic scaffolds for orthopedic implants.
Fil: D'elía, Noelia Laura. Universidad Nacional del Sur; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Química del Sur; Argentina
Fil: Mathieu, Colleen. École Polytechnique. Institute of Biomedical Engineering; Canadá
Fil: Hoemann, Caroline D.. École Polytechnique. Institute of Biomedical Engineering; Canadá. Groupe de Recherche en Sciences et Technologies Biomédicales; Canadá. École Polytechnique. Department of Chemical Engineering; Canadá
Fil: Laiuppa, Juan Andrés. Universidad Nacional del Sur. Departamento de Biología, Bioquímica y Farmacia; Argentina
Fil: Santillan, Graciela Edith. Universidad Nacional del Sur. Departamento de Biología, Bioquímica y Farmacia; Argentina
Fil: Messina, Paula Veronica. Universidad Nacional del Sur; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Química del Sur; Argentina
Materia
Hidroxiapatita
Osteoblastos
Células Madre Mesenquimales
Regeneración Ósea
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/4655

id CONICETDig_1d8dc67278dd6ad4d29bdbd6be003bdd
oai_identifier_str oai:ri.conicet.gov.ar:11336/4655
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Bone-repair properties of biodegradable hydroxyapatite nano-rod superstructuresD'elía, Noelia LauraMathieu, ColleenHoemann, Caroline D.Laiuppa, Juan AndrésSantillan, Graciela EdithMessina, Paula VeronicaHidroxiapatitaOsteoblastosCélulas Madre MesenquimalesRegeneración Óseahttps://purl.org/becyt/ford/2.10https://purl.org/becyt/ford/2Nano-hydroxyapatite (nano-HAp) materials show an analogous chemical composition to the biogenic mineral components of calcified tissues and depending on their topography they may mimic the specific arrangement of the crystals in bone. In this work, we have evaluated the potential of four synthesized nano-HAp superstructures for the in vitro conditions of bone-repair. Experiments are underway to investigate the effects of the material microstructure, surface roughness and hydrophilicity on their osseo-integration, osteo-conduction and osteo-induction abilities. Materials were tested in the presence of both, rat primary osteoblasts and rabbit mesenchymal stem cells. The following aspects are discussed: (i) cytotoxicity and material degradation; (ii) rat osteoblast spreading, proliferation and differentiation; and (iii) rabbit mesenchymal stem cell adhesion on nano-HAp and nano-HAp/collagen type I coatings. We effectively prepared a material based on biomimetic HAp nano-rods displaying the appropriate surface topography, hydrophilicity and degradation properties to induce the in vitro desired cellular responses for bone bonding and healing. Cells seeded on the selected material readily attached, proliferated and differentiated, as confirmed by cell viability, mitochondrial metabolic activity, alkaline phosphatase (ALP) activity and cytoskeletal integrity analysis by immunofluorescence localization of alpha-smooth muscle actin (α-SMA) protein. These results highlight the influence of material´s surface characteristics to determine their tissue regeneration potential and their future use in engineering osteogenic scaffolds for orthopedic implants.Fil: D'elía, Noelia Laura. Universidad Nacional del Sur; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Química del Sur; ArgentinaFil: Mathieu, Colleen. École Polytechnique. Institute of Biomedical Engineering; CanadáFil: Hoemann, Caroline D.. École Polytechnique. Institute of Biomedical Engineering; Canadá. Groupe de Recherche en Sciences et Technologies Biomédicales; Canadá. École Polytechnique. Department of Chemical Engineering; CanadáFil: Laiuppa, Juan Andrés. Universidad Nacional del Sur. Departamento de Biología, Bioquímica y Farmacia; ArgentinaFil: Santillan, Graciela Edith. Universidad Nacional del Sur. Departamento de Biología, Bioquímica y Farmacia; ArgentinaFil: Messina, Paula Veronica. Universidad Nacional del Sur; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Química del Sur; ArgentinaRoyal Society of Chemistry2015-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/4655D'elía, Noelia Laura; Mathieu, Colleen; Hoemann, Caroline D.; Laiuppa, Juan Andrés; Santillan, Graciela Edith; et al.; Bone-repair properties of biodegradable hydroxyapatite nano-rod superstructures; Royal Society of Chemistry; Nanoscale; 7; 44; 10-2015; 18751-187622040-3364enginfo:eu-repo/semantics/altIdentifier/url/http://pubs.rsc.org/en/Content/ArticleLanding/2015/NR/C5NR04850Hinfo:eu-repo/semantics/altIdentifier/doi/10.1039/c5nr04850hinfo:eu-repo/semantics/altIdentifier/issn/2040-3364info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:17:10Zoai:ri.conicet.gov.ar:11336/4655instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:17:10.726CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Bone-repair properties of biodegradable hydroxyapatite nano-rod superstructures
title Bone-repair properties of biodegradable hydroxyapatite nano-rod superstructures
spellingShingle Bone-repair properties of biodegradable hydroxyapatite nano-rod superstructures
D'elía, Noelia Laura
Hidroxiapatita
Osteoblastos
Células Madre Mesenquimales
Regeneración Ósea
title_short Bone-repair properties of biodegradable hydroxyapatite nano-rod superstructures
title_full Bone-repair properties of biodegradable hydroxyapatite nano-rod superstructures
title_fullStr Bone-repair properties of biodegradable hydroxyapatite nano-rod superstructures
title_full_unstemmed Bone-repair properties of biodegradable hydroxyapatite nano-rod superstructures
title_sort Bone-repair properties of biodegradable hydroxyapatite nano-rod superstructures
dc.creator.none.fl_str_mv D'elía, Noelia Laura
Mathieu, Colleen
Hoemann, Caroline D.
Laiuppa, Juan Andrés
Santillan, Graciela Edith
Messina, Paula Veronica
author D'elía, Noelia Laura
author_facet D'elía, Noelia Laura
Mathieu, Colleen
Hoemann, Caroline D.
Laiuppa, Juan Andrés
Santillan, Graciela Edith
Messina, Paula Veronica
author_role author
author2 Mathieu, Colleen
Hoemann, Caroline D.
Laiuppa, Juan Andrés
Santillan, Graciela Edith
Messina, Paula Veronica
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv Hidroxiapatita
Osteoblastos
Células Madre Mesenquimales
Regeneración Ósea
topic Hidroxiapatita
Osteoblastos
Células Madre Mesenquimales
Regeneración Ósea
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.10
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Nano-hydroxyapatite (nano-HAp) materials show an analogous chemical composition to the biogenic mineral components of calcified tissues and depending on their topography they may mimic the specific arrangement of the crystals in bone. In this work, we have evaluated the potential of four synthesized nano-HAp superstructures for the in vitro conditions of bone-repair. Experiments are underway to investigate the effects of the material microstructure, surface roughness and hydrophilicity on their osseo-integration, osteo-conduction and osteo-induction abilities. Materials were tested in the presence of both, rat primary osteoblasts and rabbit mesenchymal stem cells. The following aspects are discussed: (i) cytotoxicity and material degradation; (ii) rat osteoblast spreading, proliferation and differentiation; and (iii) rabbit mesenchymal stem cell adhesion on nano-HAp and nano-HAp/collagen type I coatings. We effectively prepared a material based on biomimetic HAp nano-rods displaying the appropriate surface topography, hydrophilicity and degradation properties to induce the in vitro desired cellular responses for bone bonding and healing. Cells seeded on the selected material readily attached, proliferated and differentiated, as confirmed by cell viability, mitochondrial metabolic activity, alkaline phosphatase (ALP) activity and cytoskeletal integrity analysis by immunofluorescence localization of alpha-smooth muscle actin (α-SMA) protein. These results highlight the influence of material´s surface characteristics to determine their tissue regeneration potential and their future use in engineering osteogenic scaffolds for orthopedic implants.
Fil: D'elía, Noelia Laura. Universidad Nacional del Sur; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Química del Sur; Argentina
Fil: Mathieu, Colleen. École Polytechnique. Institute of Biomedical Engineering; Canadá
Fil: Hoemann, Caroline D.. École Polytechnique. Institute of Biomedical Engineering; Canadá. Groupe de Recherche en Sciences et Technologies Biomédicales; Canadá. École Polytechnique. Department of Chemical Engineering; Canadá
Fil: Laiuppa, Juan Andrés. Universidad Nacional del Sur. Departamento de Biología, Bioquímica y Farmacia; Argentina
Fil: Santillan, Graciela Edith. Universidad Nacional del Sur. Departamento de Biología, Bioquímica y Farmacia; Argentina
Fil: Messina, Paula Veronica. Universidad Nacional del Sur; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Química del Sur; Argentina
description Nano-hydroxyapatite (nano-HAp) materials show an analogous chemical composition to the biogenic mineral components of calcified tissues and depending on their topography they may mimic the specific arrangement of the crystals in bone. In this work, we have evaluated the potential of four synthesized nano-HAp superstructures for the in vitro conditions of bone-repair. Experiments are underway to investigate the effects of the material microstructure, surface roughness and hydrophilicity on their osseo-integration, osteo-conduction and osteo-induction abilities. Materials were tested in the presence of both, rat primary osteoblasts and rabbit mesenchymal stem cells. The following aspects are discussed: (i) cytotoxicity and material degradation; (ii) rat osteoblast spreading, proliferation and differentiation; and (iii) rabbit mesenchymal stem cell adhesion on nano-HAp and nano-HAp/collagen type I coatings. We effectively prepared a material based on biomimetic HAp nano-rods displaying the appropriate surface topography, hydrophilicity and degradation properties to induce the in vitro desired cellular responses for bone bonding and healing. Cells seeded on the selected material readily attached, proliferated and differentiated, as confirmed by cell viability, mitochondrial metabolic activity, alkaline phosphatase (ALP) activity and cytoskeletal integrity analysis by immunofluorescence localization of alpha-smooth muscle actin (α-SMA) protein. These results highlight the influence of material´s surface characteristics to determine their tissue regeneration potential and their future use in engineering osteogenic scaffolds for orthopedic implants.
publishDate 2015
dc.date.none.fl_str_mv 2015-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/4655
D'elía, Noelia Laura; Mathieu, Colleen; Hoemann, Caroline D.; Laiuppa, Juan Andrés; Santillan, Graciela Edith; et al.; Bone-repair properties of biodegradable hydroxyapatite nano-rod superstructures; Royal Society of Chemistry; Nanoscale; 7; 44; 10-2015; 18751-18762
2040-3364
url http://hdl.handle.net/11336/4655
identifier_str_mv D'elía, Noelia Laura; Mathieu, Colleen; Hoemann, Caroline D.; Laiuppa, Juan Andrés; Santillan, Graciela Edith; et al.; Bone-repair properties of biodegradable hydroxyapatite nano-rod superstructures; Royal Society of Chemistry; Nanoscale; 7; 44; 10-2015; 18751-18762
2040-3364
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://pubs.rsc.org/en/Content/ArticleLanding/2015/NR/C5NR04850H
info:eu-repo/semantics/altIdentifier/doi/10.1039/c5nr04850h
info:eu-repo/semantics/altIdentifier/issn/2040-3364
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Royal Society of Chemistry
publisher.none.fl_str_mv Royal Society of Chemistry
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842980939310825472
score 12.993085