Lp-operator algebras associated with oriented graphs
- Autores
- Cortiñas, Guillermo Horacio; Rodríguez, María Eugenia
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- For each 1 ≤ p < ∞ and each countable oriented graph Q we introduce an L p -operator algebra O p (Q) which contains the Leavitt path C-algebra LQ as a dense subalgebra and is universal for those L p -representations of LQ which are spatial in the sense of N.C. Phillips. For Rn the graph with one vertex and n loops (2 ≤ n ≤ ∞), O p (Rn) = O p n , the L p -Cuntz algebra introduced by Phillips. If p < {1, 2} and S(Q) is the inverse semigroup generated by Q, O p (Q) = F p tight(S(Q)) is the tight semigroup L p -operator algebra introduced by Gardella and Lupini. We prove that O p (Q) is simple as an L p -operator algebra if and only if LQ is simple, and that in this case it is isometrically isomorphic to the closure ρ(LQ) of the image of any nonzero spatial L p -representation ρ : LQ → L(L p (X)). We also show that if LQ is purely infinite simple and p , p ′ , then there is no nonzero continuous homomorphism O p (Q) → Op ′ (Q). Our results generalize some similar results obtained by Phillips for L p -Cuntz algebras.
Fil: Cortiñas, Guillermo Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Rodríguez, María Eugenia. Universidad de Buenos Aires; Argentina - Materia
-
L^p-operator algebras
Graph algebras
Simplicity and uniqueness theorems - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/89052
Ver los metadatos del registro completo
| id |
CONICETDig_1d316025f1b87ef0319d5f120f201a17 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/89052 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Lp-operator algebras associated with oriented graphsCortiñas, Guillermo HoracioRodríguez, María EugeniaL^p-operator algebrasGraph algebrasSimplicity and uniqueness theoremshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1For each 1 ≤ p < ∞ and each countable oriented graph Q we introduce an L p -operator algebra O p (Q) which contains the Leavitt path C-algebra LQ as a dense subalgebra and is universal for those L p -representations of LQ which are spatial in the sense of N.C. Phillips. For Rn the graph with one vertex and n loops (2 ≤ n ≤ ∞), O p (Rn) = O p n , the L p -Cuntz algebra introduced by Phillips. If p < {1, 2} and S(Q) is the inverse semigroup generated by Q, O p (Q) = F p tight(S(Q)) is the tight semigroup L p -operator algebra introduced by Gardella and Lupini. We prove that O p (Q) is simple as an L p -operator algebra if and only if LQ is simple, and that in this case it is isometrically isomorphic to the closure ρ(LQ) of the image of any nonzero spatial L p -representation ρ : LQ → L(L p (X)). We also show that if LQ is purely infinite simple and p , p ′ , then there is no nonzero continuous homomorphism O p (Q) → Op ′ (Q). Our results generalize some similar results obtained by Phillips for L p -Cuntz algebras.Fil: Cortiñas, Guillermo Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Rodríguez, María Eugenia. Universidad de Buenos Aires; ArgentinaTheta Foundation2018-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/89052Cortiñas, Guillermo Horacio; Rodríguez, María Eugenia; Lp-operator algebras associated with oriented graphs; Theta Foundation; Journal Of Operator Theory; 81; 1; 4-2018; 225-2540379-4024CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.theta.ro/jot/archive/2019-081-001/index_2019-081-001.htmlinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:22:49Zoai:ri.conicet.gov.ar:11336/89052instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:22:49.759CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Lp-operator algebras associated with oriented graphs |
| title |
Lp-operator algebras associated with oriented graphs |
| spellingShingle |
Lp-operator algebras associated with oriented graphs Cortiñas, Guillermo Horacio L^p-operator algebras Graph algebras Simplicity and uniqueness theorems |
| title_short |
Lp-operator algebras associated with oriented graphs |
| title_full |
Lp-operator algebras associated with oriented graphs |
| title_fullStr |
Lp-operator algebras associated with oriented graphs |
| title_full_unstemmed |
Lp-operator algebras associated with oriented graphs |
| title_sort |
Lp-operator algebras associated with oriented graphs |
| dc.creator.none.fl_str_mv |
Cortiñas, Guillermo Horacio Rodríguez, María Eugenia |
| author |
Cortiñas, Guillermo Horacio |
| author_facet |
Cortiñas, Guillermo Horacio Rodríguez, María Eugenia |
| author_role |
author |
| author2 |
Rodríguez, María Eugenia |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
L^p-operator algebras Graph algebras Simplicity and uniqueness theorems |
| topic |
L^p-operator algebras Graph algebras Simplicity and uniqueness theorems |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
For each 1 ≤ p < ∞ and each countable oriented graph Q we introduce an L p -operator algebra O p (Q) which contains the Leavitt path C-algebra LQ as a dense subalgebra and is universal for those L p -representations of LQ which are spatial in the sense of N.C. Phillips. For Rn the graph with one vertex and n loops (2 ≤ n ≤ ∞), O p (Rn) = O p n , the L p -Cuntz algebra introduced by Phillips. If p < {1, 2} and S(Q) is the inverse semigroup generated by Q, O p (Q) = F p tight(S(Q)) is the tight semigroup L p -operator algebra introduced by Gardella and Lupini. We prove that O p (Q) is simple as an L p -operator algebra if and only if LQ is simple, and that in this case it is isometrically isomorphic to the closure ρ(LQ) of the image of any nonzero spatial L p -representation ρ : LQ → L(L p (X)). We also show that if LQ is purely infinite simple and p , p ′ , then there is no nonzero continuous homomorphism O p (Q) → Op ′ (Q). Our results generalize some similar results obtained by Phillips for L p -Cuntz algebras. Fil: Cortiñas, Guillermo Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Rodríguez, María Eugenia. Universidad de Buenos Aires; Argentina |
| description |
For each 1 ≤ p < ∞ and each countable oriented graph Q we introduce an L p -operator algebra O p (Q) which contains the Leavitt path C-algebra LQ as a dense subalgebra and is universal for those L p -representations of LQ which are spatial in the sense of N.C. Phillips. For Rn the graph with one vertex and n loops (2 ≤ n ≤ ∞), O p (Rn) = O p n , the L p -Cuntz algebra introduced by Phillips. If p < {1, 2} and S(Q) is the inverse semigroup generated by Q, O p (Q) = F p tight(S(Q)) is the tight semigroup L p -operator algebra introduced by Gardella and Lupini. We prove that O p (Q) is simple as an L p -operator algebra if and only if LQ is simple, and that in this case it is isometrically isomorphic to the closure ρ(LQ) of the image of any nonzero spatial L p -representation ρ : LQ → L(L p (X)). We also show that if LQ is purely infinite simple and p , p ′ , then there is no nonzero continuous homomorphism O p (Q) → Op ′ (Q). Our results generalize some similar results obtained by Phillips for L p -Cuntz algebras. |
| publishDate |
2018 |
| dc.date.none.fl_str_mv |
2018-04 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/89052 Cortiñas, Guillermo Horacio; Rodríguez, María Eugenia; Lp-operator algebras associated with oriented graphs; Theta Foundation; Journal Of Operator Theory; 81; 1; 4-2018; 225-254 0379-4024 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/89052 |
| identifier_str_mv |
Cortiñas, Guillermo Horacio; Rodríguez, María Eugenia; Lp-operator algebras associated with oriented graphs; Theta Foundation; Journal Of Operator Theory; 81; 1; 4-2018; 225-254 0379-4024 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.theta.ro/jot/archive/2019-081-001/index_2019-081-001.html |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Theta Foundation |
| publisher.none.fl_str_mv |
Theta Foundation |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846082629868191744 |
| score |
13.22299 |