Lp-operator algebras associated with oriented graphs

Autores
Cortiñas, Guillermo Horacio; Rodríguez, María Eugenia
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
For each 1 ≤ p < ∞ and each countable oriented graph Q we introduce an L p -operator algebra O p (Q) which contains the Leavitt path C-algebra LQ as a dense subalgebra and is universal for those L p -representations of LQ which are spatial in the sense of N.C. Phillips. For Rn the graph with one vertex and n loops (2 ≤ n ≤ ∞), O p (Rn) = O p n , the L p -Cuntz algebra introduced by Phillips. If p < {1, 2} and S(Q) is the inverse semigroup generated by Q, O p (Q) = F p tight(S(Q)) is the tight semigroup L p -operator algebra introduced by Gardella and Lupini. We prove that O p (Q) is simple as an L p -operator algebra if and only if LQ is simple, and that in this case it is isometrically isomorphic to the closure ρ(LQ) of the image of any nonzero spatial L p -representation ρ : LQ → L(L p (X)). We also show that if LQ is purely infinite simple and p , p ′ , then there is no nonzero continuous homomorphism O p (Q) → Op ′ (Q). Our results generalize some similar results obtained by Phillips for L p -Cuntz algebras.
Fil: Cortiñas, Guillermo Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Rodríguez, María Eugenia. Universidad de Buenos Aires; Argentina
Materia
L^p-operator algebras
Graph algebras
Simplicity and uniqueness theorems
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/89052

id CONICETDig_1d316025f1b87ef0319d5f120f201a17
oai_identifier_str oai:ri.conicet.gov.ar:11336/89052
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Lp-operator algebras associated with oriented graphsCortiñas, Guillermo HoracioRodríguez, María EugeniaL^p-operator algebrasGraph algebrasSimplicity and uniqueness theoremshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1For each 1 ≤ p < ∞ and each countable oriented graph Q we introduce an L p -operator algebra O p (Q) which contains the Leavitt path C-algebra LQ as a dense subalgebra and is universal for those L p -representations of LQ which are spatial in the sense of N.C. Phillips. For Rn the graph with one vertex and n loops (2 ≤ n ≤ ∞), O p (Rn) = O p n , the L p -Cuntz algebra introduced by Phillips. If p < {1, 2} and S(Q) is the inverse semigroup generated by Q, O p (Q) = F p tight(S(Q)) is the tight semigroup L p -operator algebra introduced by Gardella and Lupini. We prove that O p (Q) is simple as an L p -operator algebra if and only if LQ is simple, and that in this case it is isometrically isomorphic to the closure ρ(LQ) of the image of any nonzero spatial L p -representation ρ : LQ → L(L p (X)). We also show that if LQ is purely infinite simple and p , p ′ , then there is no nonzero continuous homomorphism O p (Q) → Op ′ (Q). Our results generalize some similar results obtained by Phillips for L p -Cuntz algebras.Fil: Cortiñas, Guillermo Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Rodríguez, María Eugenia. Universidad de Buenos Aires; ArgentinaTheta Foundation2018-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/89052Cortiñas, Guillermo Horacio; Rodríguez, María Eugenia; Lp-operator algebras associated with oriented graphs; Theta Foundation; Journal Of Operator Theory; 81; 1; 4-2018; 225-2540379-4024CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.theta.ro/jot/archive/2019-081-001/index_2019-081-001.htmlinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:22:49Zoai:ri.conicet.gov.ar:11336/89052instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:22:49.759CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Lp-operator algebras associated with oriented graphs
title Lp-operator algebras associated with oriented graphs
spellingShingle Lp-operator algebras associated with oriented graphs
Cortiñas, Guillermo Horacio
L^p-operator algebras
Graph algebras
Simplicity and uniqueness theorems
title_short Lp-operator algebras associated with oriented graphs
title_full Lp-operator algebras associated with oriented graphs
title_fullStr Lp-operator algebras associated with oriented graphs
title_full_unstemmed Lp-operator algebras associated with oriented graphs
title_sort Lp-operator algebras associated with oriented graphs
dc.creator.none.fl_str_mv Cortiñas, Guillermo Horacio
Rodríguez, María Eugenia
author Cortiñas, Guillermo Horacio
author_facet Cortiñas, Guillermo Horacio
Rodríguez, María Eugenia
author_role author
author2 Rodríguez, María Eugenia
author2_role author
dc.subject.none.fl_str_mv L^p-operator algebras
Graph algebras
Simplicity and uniqueness theorems
topic L^p-operator algebras
Graph algebras
Simplicity and uniqueness theorems
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv For each 1 ≤ p < ∞ and each countable oriented graph Q we introduce an L p -operator algebra O p (Q) which contains the Leavitt path C-algebra LQ as a dense subalgebra and is universal for those L p -representations of LQ which are spatial in the sense of N.C. Phillips. For Rn the graph with one vertex and n loops (2 ≤ n ≤ ∞), O p (Rn) = O p n , the L p -Cuntz algebra introduced by Phillips. If p < {1, 2} and S(Q) is the inverse semigroup generated by Q, O p (Q) = F p tight(S(Q)) is the tight semigroup L p -operator algebra introduced by Gardella and Lupini. We prove that O p (Q) is simple as an L p -operator algebra if and only if LQ is simple, and that in this case it is isometrically isomorphic to the closure ρ(LQ) of the image of any nonzero spatial L p -representation ρ : LQ → L(L p (X)). We also show that if LQ is purely infinite simple and p , p ′ , then there is no nonzero continuous homomorphism O p (Q) → Op ′ (Q). Our results generalize some similar results obtained by Phillips for L p -Cuntz algebras.
Fil: Cortiñas, Guillermo Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Rodríguez, María Eugenia. Universidad de Buenos Aires; Argentina
description For each 1 ≤ p < ∞ and each countable oriented graph Q we introduce an L p -operator algebra O p (Q) which contains the Leavitt path C-algebra LQ as a dense subalgebra and is universal for those L p -representations of LQ which are spatial in the sense of N.C. Phillips. For Rn the graph with one vertex and n loops (2 ≤ n ≤ ∞), O p (Rn) = O p n , the L p -Cuntz algebra introduced by Phillips. If p < {1, 2} and S(Q) is the inverse semigroup generated by Q, O p (Q) = F p tight(S(Q)) is the tight semigroup L p -operator algebra introduced by Gardella and Lupini. We prove that O p (Q) is simple as an L p -operator algebra if and only if LQ is simple, and that in this case it is isometrically isomorphic to the closure ρ(LQ) of the image of any nonzero spatial L p -representation ρ : LQ → L(L p (X)). We also show that if LQ is purely infinite simple and p , p ′ , then there is no nonzero continuous homomorphism O p (Q) → Op ′ (Q). Our results generalize some similar results obtained by Phillips for L p -Cuntz algebras.
publishDate 2018
dc.date.none.fl_str_mv 2018-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/89052
Cortiñas, Guillermo Horacio; Rodríguez, María Eugenia; Lp-operator algebras associated with oriented graphs; Theta Foundation; Journal Of Operator Theory; 81; 1; 4-2018; 225-254
0379-4024
CONICET Digital
CONICET
url http://hdl.handle.net/11336/89052
identifier_str_mv Cortiñas, Guillermo Horacio; Rodríguez, María Eugenia; Lp-operator algebras associated with oriented graphs; Theta Foundation; Journal Of Operator Theory; 81; 1; 4-2018; 225-254
0379-4024
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.theta.ro/jot/archive/2019-081-001/index_2019-081-001.html
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Theta Foundation
publisher.none.fl_str_mv Theta Foundation
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846082629868191744
score 13.22299