A review of the effects of tillage systems on some soil physical properties, water content, nitrate availability and crops yield in the Argentine Pampas

Autores
Alvarez, Roberto; Steinbach, Haydee Sara
Año de publicación
2009
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The Argentine Pampas is one of the most important cropping regions of the World. Limited tillage systems, and specially no-till, had widespread in recent years, occupying actually around 70% of the surface devoted to annual crops. We review results produced in field experiments installed along the Pampas to determine the effect of the adoption of these tillage systems on some soil properties and crops yield. It was performed a metanalysis of data from experiments where plow tillage (mouldboard plow), reduced tillage (chisel plow, disk plow or harrow disk) and no-till were compared. Treatments effects were contrasted by paired t-tests between groups of paired data. Soil bulk density and cone penetration resistance of the 0–20 cm layer were higher under limited tillage systems than under plow tillage. Increases of bulk density under no-till in comparison to plow tillage were generally small, averaging 4%, but cone penetration increased by 50% in many soils. The increase of bulk density was greater in soils of initial low bulk density. Neither bulk density increases nor cone penetration changes reached critical threshold for roots development. Aggregate stability and water infiltration rate were higher in soils subjected to limited tillage systems than under plow tillage. The improvement of aggregate stability was higher in poorer structured soils, with an average increase of 70% under no-till in relation to plow tillage. Under no-till infiltration rate doubled in average that of plow tillage. Soil water content during the critical periods of sowing and flowering was generally greater under limited tillage but, conversely, nitrate nitrogen levels were greater in plow tillage. Higher soil water content under no-till in relation to plow tillage may satisfied the evapotranspiration demand of 1–3 days of crops during the critical flowering period, being nitrate nitrogen in average 21 kg ha−1 lower under no-till. Soybean (Glicine max (L.)-Merr.) yield was not affected by tillage system, meanwhile wheat (Triticum aestivum L.) and corn (Zea mays L.) yields were lower under reduced tillage and no-till than under plow tillage without nitrogen fertilization. Wheat and corn no-till yields were 10–14% lower that yields under plow tillage as a mean. When fertilizers were applied, wheat and corn yield differences between tillage treatments generally disappeared. The adoption of limited tillage systems in the Pampas leads to soil improvement but also generates the necessity of increase nitrogen fertilizers utilization to sustain yields of graminaceus crops.
Fil: Alvarez, Roberto. Universidad de Buenos Aires. Facultad de Agronomía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario; Argentina
Fil: Steinbach, Haydee Sara. Universidad de Buenos Aires. Facultad de Agronomía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario; Argentina
Materia
TILLAGE
PHYSICAL PROPERTIES
CROPS YIELD
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/112191

id CONICETDig_1bc1f9b3027449e29e519ada61f4ed25
oai_identifier_str oai:ri.conicet.gov.ar:11336/112191
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A review of the effects of tillage systems on some soil physical properties, water content, nitrate availability and crops yield in the Argentine PampasAlvarez, RobertoSteinbach, Haydee SaraTILLAGEPHYSICAL PROPERTIESCROPS YIELDhttps://purl.org/becyt/ford/4.5https://purl.org/becyt/ford/4The Argentine Pampas is one of the most important cropping regions of the World. Limited tillage systems, and specially no-till, had widespread in recent years, occupying actually around 70% of the surface devoted to annual crops. We review results produced in field experiments installed along the Pampas to determine the effect of the adoption of these tillage systems on some soil properties and crops yield. It was performed a metanalysis of data from experiments where plow tillage (mouldboard plow), reduced tillage (chisel plow, disk plow or harrow disk) and no-till were compared. Treatments effects were contrasted by paired t-tests between groups of paired data. Soil bulk density and cone penetration resistance of the 0–20 cm layer were higher under limited tillage systems than under plow tillage. Increases of bulk density under no-till in comparison to plow tillage were generally small, averaging 4%, but cone penetration increased by 50% in many soils. The increase of bulk density was greater in soils of initial low bulk density. Neither bulk density increases nor cone penetration changes reached critical threshold for roots development. Aggregate stability and water infiltration rate were higher in soils subjected to limited tillage systems than under plow tillage. The improvement of aggregate stability was higher in poorer structured soils, with an average increase of 70% under no-till in relation to plow tillage. Under no-till infiltration rate doubled in average that of plow tillage. Soil water content during the critical periods of sowing and flowering was generally greater under limited tillage but, conversely, nitrate nitrogen levels were greater in plow tillage. Higher soil water content under no-till in relation to plow tillage may satisfied the evapotranspiration demand of 1–3 days of crops during the critical flowering period, being nitrate nitrogen in average 21 kg ha−1 lower under no-till. Soybean (Glicine max (L.)-Merr.) yield was not affected by tillage system, meanwhile wheat (Triticum aestivum L.) and corn (Zea mays L.) yields were lower under reduced tillage and no-till than under plow tillage without nitrogen fertilization. Wheat and corn no-till yields were 10–14% lower that yields under plow tillage as a mean. When fertilizers were applied, wheat and corn yield differences between tillage treatments generally disappeared. The adoption of limited tillage systems in the Pampas leads to soil improvement but also generates the necessity of increase nitrogen fertilizers utilization to sustain yields of graminaceus crops.Fil: Alvarez, Roberto. Universidad de Buenos Aires. Facultad de Agronomía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario; ArgentinaFil: Steinbach, Haydee Sara. Universidad de Buenos Aires. Facultad de Agronomía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario; ArgentinaElsevier Science2009-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/112191Alvarez, Roberto; Steinbach, Haydee Sara; A review of the effects of tillage systems on some soil physical properties, water content, nitrate availability and crops yield in the Argentine Pampas; Elsevier Science; Soil & Tillage Research; 104; 1; 6-2009; 1-150167-1987CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S016719870900052Xinfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.still.2009.02.005info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:11:56Zoai:ri.conicet.gov.ar:11336/112191instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:11:57.128CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A review of the effects of tillage systems on some soil physical properties, water content, nitrate availability and crops yield in the Argentine Pampas
title A review of the effects of tillage systems on some soil physical properties, water content, nitrate availability and crops yield in the Argentine Pampas
spellingShingle A review of the effects of tillage systems on some soil physical properties, water content, nitrate availability and crops yield in the Argentine Pampas
Alvarez, Roberto
TILLAGE
PHYSICAL PROPERTIES
CROPS YIELD
title_short A review of the effects of tillage systems on some soil physical properties, water content, nitrate availability and crops yield in the Argentine Pampas
title_full A review of the effects of tillage systems on some soil physical properties, water content, nitrate availability and crops yield in the Argentine Pampas
title_fullStr A review of the effects of tillage systems on some soil physical properties, water content, nitrate availability and crops yield in the Argentine Pampas
title_full_unstemmed A review of the effects of tillage systems on some soil physical properties, water content, nitrate availability and crops yield in the Argentine Pampas
title_sort A review of the effects of tillage systems on some soil physical properties, water content, nitrate availability and crops yield in the Argentine Pampas
dc.creator.none.fl_str_mv Alvarez, Roberto
Steinbach, Haydee Sara
author Alvarez, Roberto
author_facet Alvarez, Roberto
Steinbach, Haydee Sara
author_role author
author2 Steinbach, Haydee Sara
author2_role author
dc.subject.none.fl_str_mv TILLAGE
PHYSICAL PROPERTIES
CROPS YIELD
topic TILLAGE
PHYSICAL PROPERTIES
CROPS YIELD
purl_subject.fl_str_mv https://purl.org/becyt/ford/4.5
https://purl.org/becyt/ford/4
dc.description.none.fl_txt_mv The Argentine Pampas is one of the most important cropping regions of the World. Limited tillage systems, and specially no-till, had widespread in recent years, occupying actually around 70% of the surface devoted to annual crops. We review results produced in field experiments installed along the Pampas to determine the effect of the adoption of these tillage systems on some soil properties and crops yield. It was performed a metanalysis of data from experiments where plow tillage (mouldboard plow), reduced tillage (chisel plow, disk plow or harrow disk) and no-till were compared. Treatments effects were contrasted by paired t-tests between groups of paired data. Soil bulk density and cone penetration resistance of the 0–20 cm layer were higher under limited tillage systems than under plow tillage. Increases of bulk density under no-till in comparison to plow tillage were generally small, averaging 4%, but cone penetration increased by 50% in many soils. The increase of bulk density was greater in soils of initial low bulk density. Neither bulk density increases nor cone penetration changes reached critical threshold for roots development. Aggregate stability and water infiltration rate were higher in soils subjected to limited tillage systems than under plow tillage. The improvement of aggregate stability was higher in poorer structured soils, with an average increase of 70% under no-till in relation to plow tillage. Under no-till infiltration rate doubled in average that of plow tillage. Soil water content during the critical periods of sowing and flowering was generally greater under limited tillage but, conversely, nitrate nitrogen levels were greater in plow tillage. Higher soil water content under no-till in relation to plow tillage may satisfied the evapotranspiration demand of 1–3 days of crops during the critical flowering period, being nitrate nitrogen in average 21 kg ha−1 lower under no-till. Soybean (Glicine max (L.)-Merr.) yield was not affected by tillage system, meanwhile wheat (Triticum aestivum L.) and corn (Zea mays L.) yields were lower under reduced tillage and no-till than under plow tillage without nitrogen fertilization. Wheat and corn no-till yields were 10–14% lower that yields under plow tillage as a mean. When fertilizers were applied, wheat and corn yield differences between tillage treatments generally disappeared. The adoption of limited tillage systems in the Pampas leads to soil improvement but also generates the necessity of increase nitrogen fertilizers utilization to sustain yields of graminaceus crops.
Fil: Alvarez, Roberto. Universidad de Buenos Aires. Facultad de Agronomía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario; Argentina
Fil: Steinbach, Haydee Sara. Universidad de Buenos Aires. Facultad de Agronomía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario; Argentina
description The Argentine Pampas is one of the most important cropping regions of the World. Limited tillage systems, and specially no-till, had widespread in recent years, occupying actually around 70% of the surface devoted to annual crops. We review results produced in field experiments installed along the Pampas to determine the effect of the adoption of these tillage systems on some soil properties and crops yield. It was performed a metanalysis of data from experiments where plow tillage (mouldboard plow), reduced tillage (chisel plow, disk plow or harrow disk) and no-till were compared. Treatments effects were contrasted by paired t-tests between groups of paired data. Soil bulk density and cone penetration resistance of the 0–20 cm layer were higher under limited tillage systems than under plow tillage. Increases of bulk density under no-till in comparison to plow tillage were generally small, averaging 4%, but cone penetration increased by 50% in many soils. The increase of bulk density was greater in soils of initial low bulk density. Neither bulk density increases nor cone penetration changes reached critical threshold for roots development. Aggregate stability and water infiltration rate were higher in soils subjected to limited tillage systems than under plow tillage. The improvement of aggregate stability was higher in poorer structured soils, with an average increase of 70% under no-till in relation to plow tillage. Under no-till infiltration rate doubled in average that of plow tillage. Soil water content during the critical periods of sowing and flowering was generally greater under limited tillage but, conversely, nitrate nitrogen levels were greater in plow tillage. Higher soil water content under no-till in relation to plow tillage may satisfied the evapotranspiration demand of 1–3 days of crops during the critical flowering period, being nitrate nitrogen in average 21 kg ha−1 lower under no-till. Soybean (Glicine max (L.)-Merr.) yield was not affected by tillage system, meanwhile wheat (Triticum aestivum L.) and corn (Zea mays L.) yields were lower under reduced tillage and no-till than under plow tillage without nitrogen fertilization. Wheat and corn no-till yields were 10–14% lower that yields under plow tillage as a mean. When fertilizers were applied, wheat and corn yield differences between tillage treatments generally disappeared. The adoption of limited tillage systems in the Pampas leads to soil improvement but also generates the necessity of increase nitrogen fertilizers utilization to sustain yields of graminaceus crops.
publishDate 2009
dc.date.none.fl_str_mv 2009-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/112191
Alvarez, Roberto; Steinbach, Haydee Sara; A review of the effects of tillage systems on some soil physical properties, water content, nitrate availability and crops yield in the Argentine Pampas; Elsevier Science; Soil & Tillage Research; 104; 1; 6-2009; 1-15
0167-1987
CONICET Digital
CONICET
url http://hdl.handle.net/11336/112191
identifier_str_mv Alvarez, Roberto; Steinbach, Haydee Sara; A review of the effects of tillage systems on some soil physical properties, water content, nitrate availability and crops yield in the Argentine Pampas; Elsevier Science; Soil & Tillage Research; 104; 1; 6-2009; 1-15
0167-1987
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S016719870900052X
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.still.2009.02.005
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842270178305376256
score 13.13397