Spatial Distribution of Aedes aegypti Oviposition Temporal Patterns and Their Relationship with Environment and Dengue Incidence

Autores
Andreo, Verónica Carolina; Porcasi Gomez, Ximena; Guzmán, Claudio Daniel; López, Laura; Scavuzzo, Carlos Matias
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Aedes aegypti, the mosquito species transmitting dengue, zika, chikungunya and yellow fever viruses, is fully adapted to thrive in urban areas. The temporal activity of this mosquito, however, varies within urban areas which might imply different transmission risk. In this work, we hypothesize that temporal differences in mosquito activity patterns are determined by local environmental conditions. Hence, we explore the existence of groups of temporal patterns in weekly time series of Ae. aegypti ovitraps records (2017–2019) by means of time series clustering. Next, with the aim of predicting risk in places with no mosquito field data, we use machine learning classification tools to assess the association of temporal patterns with environmental variables derived from satellite imagery and predict temporal patterns over the city area to finally test the relationship with dengue incidence. We found three groups of temporal patterns that showed association with land cover diversity, variability in vegetation and humidity and, heterogeneity measured by texture indices estimated over buffer areas surrounding ovitraps. Dengue incidence on a neighborhood basis showed a weak but positive association with the percentage of pixels belonging to only one of the temporal patterns detected. The understanding of the spatial distribution of temporal patterns and their environmental determinants might then become highly relevant to guide the allocation of prevention and potential interventions. Further investigation is still needed though to incorporate other determinants not considered here.
Fil: Andreo, Verónica Carolina. Comision Nacional de Actividades Espaciales. Instituto de Altos Estudios Espaciales "Mario Gulich"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina
Fil: Porcasi Gomez, Ximena. Comision Nacional de Actividades Espaciales. Instituto de Altos Estudios Espaciales "Mario Gulich"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina
Fil: Guzmán, Claudio Daniel. Provincia de Córdoba. Ministerio de Salud; Argentina
Fil: López, Laura. Provincia de Córdoba. Ministerio de Salud; Argentina
Fil: Scavuzzo, Carlos Matias. Comision Nacional de Actividades Espaciales. Instituto de Altos Estudios Espaciales "Mario Gulich"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina
Materia
CLUSTERING
EARTH OBSERVATION
MACHINE LEARNING
MOSQUITOES
TIME SERIES
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/152237

id CONICETDig_1b4bffeb57cb6070f73d31b83bb659df
oai_identifier_str oai:ri.conicet.gov.ar:11336/152237
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Spatial Distribution of Aedes aegypti Oviposition Temporal Patterns and Their Relationship with Environment and Dengue IncidenceAndreo, Verónica CarolinaPorcasi Gomez, XimenaGuzmán, Claudio DanielLópez, LauraScavuzzo, Carlos MatiasCLUSTERINGEARTH OBSERVATIONMACHINE LEARNINGMOSQUITOESTIME SERIEShttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1https://purl.org/becyt/ford/2.7https://purl.org/becyt/ford/2Aedes aegypti, the mosquito species transmitting dengue, zika, chikungunya and yellow fever viruses, is fully adapted to thrive in urban areas. The temporal activity of this mosquito, however, varies within urban areas which might imply different transmission risk. In this work, we hypothesize that temporal differences in mosquito activity patterns are determined by local environmental conditions. Hence, we explore the existence of groups of temporal patterns in weekly time series of Ae. aegypti ovitraps records (2017–2019) by means of time series clustering. Next, with the aim of predicting risk in places with no mosquito field data, we use machine learning classification tools to assess the association of temporal patterns with environmental variables derived from satellite imagery and predict temporal patterns over the city area to finally test the relationship with dengue incidence. We found three groups of temporal patterns that showed association with land cover diversity, variability in vegetation and humidity and, heterogeneity measured by texture indices estimated over buffer areas surrounding ovitraps. Dengue incidence on a neighborhood basis showed a weak but positive association with the percentage of pixels belonging to only one of the temporal patterns detected. The understanding of the spatial distribution of temporal patterns and their environmental determinants might then become highly relevant to guide the allocation of prevention and potential interventions. Further investigation is still needed though to incorporate other determinants not considered here.Fil: Andreo, Verónica Carolina. Comision Nacional de Actividades Espaciales. Instituto de Altos Estudios Espaciales "Mario Gulich"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaFil: Porcasi Gomez, Ximena. Comision Nacional de Actividades Espaciales. Instituto de Altos Estudios Espaciales "Mario Gulich"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaFil: Guzmán, Claudio Daniel. Provincia de Córdoba. Ministerio de Salud; ArgentinaFil: López, Laura. Provincia de Córdoba. Ministerio de Salud; ArgentinaFil: Scavuzzo, Carlos Matias. Comision Nacional de Actividades Espaciales. Instituto de Altos Estudios Espaciales "Mario Gulich"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaMDPI2021-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/152237Andreo, Verónica Carolina; Porcasi Gomez, Ximena; Guzmán, Claudio Daniel; López, Laura; Scavuzzo, Carlos Matias; Spatial Distribution of Aedes aegypti Oviposition Temporal Patterns and Their Relationship with Environment and Dengue Incidence; MDPI; Insects; 12; 10; 10-2021; 1-182075-4450CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2075-4450/12/10/919info:eu-repo/semantics/altIdentifier/doi/10.3390/insects12100919info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:24:12Zoai:ri.conicet.gov.ar:11336/152237instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:24:12.373CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Spatial Distribution of Aedes aegypti Oviposition Temporal Patterns and Their Relationship with Environment and Dengue Incidence
title Spatial Distribution of Aedes aegypti Oviposition Temporal Patterns and Their Relationship with Environment and Dengue Incidence
spellingShingle Spatial Distribution of Aedes aegypti Oviposition Temporal Patterns and Their Relationship with Environment and Dengue Incidence
Andreo, Verónica Carolina
CLUSTERING
EARTH OBSERVATION
MACHINE LEARNING
MOSQUITOES
TIME SERIES
title_short Spatial Distribution of Aedes aegypti Oviposition Temporal Patterns and Their Relationship with Environment and Dengue Incidence
title_full Spatial Distribution of Aedes aegypti Oviposition Temporal Patterns and Their Relationship with Environment and Dengue Incidence
title_fullStr Spatial Distribution of Aedes aegypti Oviposition Temporal Patterns and Their Relationship with Environment and Dengue Incidence
title_full_unstemmed Spatial Distribution of Aedes aegypti Oviposition Temporal Patterns and Their Relationship with Environment and Dengue Incidence
title_sort Spatial Distribution of Aedes aegypti Oviposition Temporal Patterns and Their Relationship with Environment and Dengue Incidence
dc.creator.none.fl_str_mv Andreo, Verónica Carolina
Porcasi Gomez, Ximena
Guzmán, Claudio Daniel
López, Laura
Scavuzzo, Carlos Matias
author Andreo, Verónica Carolina
author_facet Andreo, Verónica Carolina
Porcasi Gomez, Ximena
Guzmán, Claudio Daniel
López, Laura
Scavuzzo, Carlos Matias
author_role author
author2 Porcasi Gomez, Ximena
Guzmán, Claudio Daniel
López, Laura
Scavuzzo, Carlos Matias
author2_role author
author
author
author
dc.subject.none.fl_str_mv CLUSTERING
EARTH OBSERVATION
MACHINE LEARNING
MOSQUITOES
TIME SERIES
topic CLUSTERING
EARTH OBSERVATION
MACHINE LEARNING
MOSQUITOES
TIME SERIES
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
https://purl.org/becyt/ford/2.7
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Aedes aegypti, the mosquito species transmitting dengue, zika, chikungunya and yellow fever viruses, is fully adapted to thrive in urban areas. The temporal activity of this mosquito, however, varies within urban areas which might imply different transmission risk. In this work, we hypothesize that temporal differences in mosquito activity patterns are determined by local environmental conditions. Hence, we explore the existence of groups of temporal patterns in weekly time series of Ae. aegypti ovitraps records (2017–2019) by means of time series clustering. Next, with the aim of predicting risk in places with no mosquito field data, we use machine learning classification tools to assess the association of temporal patterns with environmental variables derived from satellite imagery and predict temporal patterns over the city area to finally test the relationship with dengue incidence. We found three groups of temporal patterns that showed association with land cover diversity, variability in vegetation and humidity and, heterogeneity measured by texture indices estimated over buffer areas surrounding ovitraps. Dengue incidence on a neighborhood basis showed a weak but positive association with the percentage of pixels belonging to only one of the temporal patterns detected. The understanding of the spatial distribution of temporal patterns and their environmental determinants might then become highly relevant to guide the allocation of prevention and potential interventions. Further investigation is still needed though to incorporate other determinants not considered here.
Fil: Andreo, Verónica Carolina. Comision Nacional de Actividades Espaciales. Instituto de Altos Estudios Espaciales "Mario Gulich"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina
Fil: Porcasi Gomez, Ximena. Comision Nacional de Actividades Espaciales. Instituto de Altos Estudios Espaciales "Mario Gulich"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina
Fil: Guzmán, Claudio Daniel. Provincia de Córdoba. Ministerio de Salud; Argentina
Fil: López, Laura. Provincia de Córdoba. Ministerio de Salud; Argentina
Fil: Scavuzzo, Carlos Matias. Comision Nacional de Actividades Espaciales. Instituto de Altos Estudios Espaciales "Mario Gulich"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina
description Aedes aegypti, the mosquito species transmitting dengue, zika, chikungunya and yellow fever viruses, is fully adapted to thrive in urban areas. The temporal activity of this mosquito, however, varies within urban areas which might imply different transmission risk. In this work, we hypothesize that temporal differences in mosquito activity patterns are determined by local environmental conditions. Hence, we explore the existence of groups of temporal patterns in weekly time series of Ae. aegypti ovitraps records (2017–2019) by means of time series clustering. Next, with the aim of predicting risk in places with no mosquito field data, we use machine learning classification tools to assess the association of temporal patterns with environmental variables derived from satellite imagery and predict temporal patterns over the city area to finally test the relationship with dengue incidence. We found three groups of temporal patterns that showed association with land cover diversity, variability in vegetation and humidity and, heterogeneity measured by texture indices estimated over buffer areas surrounding ovitraps. Dengue incidence on a neighborhood basis showed a weak but positive association with the percentage of pixels belonging to only one of the temporal patterns detected. The understanding of the spatial distribution of temporal patterns and their environmental determinants might then become highly relevant to guide the allocation of prevention and potential interventions. Further investigation is still needed though to incorporate other determinants not considered here.
publishDate 2021
dc.date.none.fl_str_mv 2021-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/152237
Andreo, Verónica Carolina; Porcasi Gomez, Ximena; Guzmán, Claudio Daniel; López, Laura; Scavuzzo, Carlos Matias; Spatial Distribution of Aedes aegypti Oviposition Temporal Patterns and Their Relationship with Environment and Dengue Incidence; MDPI; Insects; 12; 10; 10-2021; 1-18
2075-4450
CONICET Digital
CONICET
url http://hdl.handle.net/11336/152237
identifier_str_mv Andreo, Verónica Carolina; Porcasi Gomez, Ximena; Guzmán, Claudio Daniel; López, Laura; Scavuzzo, Carlos Matias; Spatial Distribution of Aedes aegypti Oviposition Temporal Patterns and Their Relationship with Environment and Dengue Incidence; MDPI; Insects; 12; 10; 10-2021; 1-18
2075-4450
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2075-4450/12/10/919
info:eu-repo/semantics/altIdentifier/doi/10.3390/insects12100919
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv MDPI
publisher.none.fl_str_mv MDPI
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846082661749096448
score 13.22299