Maximum approximate entropy and threshold: A new approach for regularity changes detection
- Autores
- Restrepo Rinckoar, Juan Felipe; Schlotthauer, Gaston; Torres, Maria Eugenia
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Approximate entropy (ApEn) has been widely used as an estimator of regularity in many scientific fields. It has proved to be a useful tool because of its ability to distinguish different system’s dynamics when there is only available short-length noisy data. Incorrect parameter selection (embedding dimension m, threshold r and data length N) and the presence of noise in the signal can undermine the ApEn discrimination capacity. In this work we show that rmax (ApEn(m,rmax,N)=ApEnmax) can also be used as a feature to discern between dynamics. Moreover, the combined use of ApEnmax and rmax allows a better discrimination capacity to be accomplished, even in the presence of noise. We conducted our studies using real physiological time series and simulated signals corresponding to both low- and high-dimensional systems. When ApEnmax is incapable of discerning between different dynamics because of the noise presence, our results suggest that rmax provides additional information that can be useful for classification purposes. Based on cross-validation tests, we conclude that, for short length noisy signals, the joint use of ApEnmax and rmax can significantly decrease the misclassification rate of a linear classifier in comparison with their isolated use.
Fil: Restrepo Rinckoar, Juan Felipe. Universidad Nacional de Entre Ríos. Facultad de Ingeniería. Departamento de Matemática e Informática. Laboratorio de Señales y Dinámicas no Lineales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Schlotthauer, Gaston. Universidad Nacional de Entre Ríos. Facultad de Ingeniería. Departamento de Matemática e Informática. Laboratorio de Señales y Dinámicas no Lineales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Torres, Maria Eugenia. Universidad Nacional de Entre Ríos. Facultad de Ingeniería. Departamento de Matemática e Informática. Laboratorio de Señales y Dinámicas no Lineales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Non-linear dynamics
Approximate entropy
Chaotic time-series - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/33590
Ver los metadatos del registro completo
id |
CONICETDig_1a193adc1c91292aff470df6ad487ea3 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/33590 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Maximum approximate entropy and threshold: A new approach for regularity changes detectionRestrepo Rinckoar, Juan FelipeSchlotthauer, GastonTorres, Maria EugeniaNon-linear dynamicsApproximate entropyChaotic time-serieshttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2Approximate entropy (ApEn) has been widely used as an estimator of regularity in many scientific fields. It has proved to be a useful tool because of its ability to distinguish different system’s dynamics when there is only available short-length noisy data. Incorrect parameter selection (embedding dimension m, threshold r and data length N) and the presence of noise in the signal can undermine the ApEn discrimination capacity. In this work we show that rmax (ApEn(m,rmax,N)=ApEnmax) can also be used as a feature to discern between dynamics. Moreover, the combined use of ApEnmax and rmax allows a better discrimination capacity to be accomplished, even in the presence of noise. We conducted our studies using real physiological time series and simulated signals corresponding to both low- and high-dimensional systems. When ApEnmax is incapable of discerning between different dynamics because of the noise presence, our results suggest that rmax provides additional information that can be useful for classification purposes. Based on cross-validation tests, we conclude that, for short length noisy signals, the joint use of ApEnmax and rmax can significantly decrease the misclassification rate of a linear classifier in comparison with their isolated use.Fil: Restrepo Rinckoar, Juan Felipe. Universidad Nacional de Entre Ríos. Facultad de Ingeniería. Departamento de Matemática e Informática. Laboratorio de Señales y Dinámicas no Lineales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Schlotthauer, Gaston. Universidad Nacional de Entre Ríos. Facultad de Ingeniería. Departamento de Matemática e Informática. Laboratorio de Señales y Dinámicas no Lineales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Torres, Maria Eugenia. Universidad Nacional de Entre Ríos. Facultad de Ingeniería. Departamento de Matemática e Informática. Laboratorio de Señales y Dinámicas no Lineales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaElsevier2014-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/33590Restrepo Rinckoar, Juan Felipe; Schlotthauer, Gaston; Torres, Maria Eugenia; Maximum approximate entropy and threshold: A new approach for regularity changes detection; Elsevier; Physica A: Statistical Mechanics and its Applications; 409; 5-2014; 97-1090378-4371CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.physa.2014.04.041info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0378437114003598info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1405.7637info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:00:22Zoai:ri.conicet.gov.ar:11336/33590instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:00:22.696CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Maximum approximate entropy and threshold: A new approach for regularity changes detection |
title |
Maximum approximate entropy and threshold: A new approach for regularity changes detection |
spellingShingle |
Maximum approximate entropy and threshold: A new approach for regularity changes detection Restrepo Rinckoar, Juan Felipe Non-linear dynamics Approximate entropy Chaotic time-series |
title_short |
Maximum approximate entropy and threshold: A new approach for regularity changes detection |
title_full |
Maximum approximate entropy and threshold: A new approach for regularity changes detection |
title_fullStr |
Maximum approximate entropy and threshold: A new approach for regularity changes detection |
title_full_unstemmed |
Maximum approximate entropy and threshold: A new approach for regularity changes detection |
title_sort |
Maximum approximate entropy and threshold: A new approach for regularity changes detection |
dc.creator.none.fl_str_mv |
Restrepo Rinckoar, Juan Felipe Schlotthauer, Gaston Torres, Maria Eugenia |
author |
Restrepo Rinckoar, Juan Felipe |
author_facet |
Restrepo Rinckoar, Juan Felipe Schlotthauer, Gaston Torres, Maria Eugenia |
author_role |
author |
author2 |
Schlotthauer, Gaston Torres, Maria Eugenia |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Non-linear dynamics Approximate entropy Chaotic time-series |
topic |
Non-linear dynamics Approximate entropy Chaotic time-series |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Approximate entropy (ApEn) has been widely used as an estimator of regularity in many scientific fields. It has proved to be a useful tool because of its ability to distinguish different system’s dynamics when there is only available short-length noisy data. Incorrect parameter selection (embedding dimension m, threshold r and data length N) and the presence of noise in the signal can undermine the ApEn discrimination capacity. In this work we show that rmax (ApEn(m,rmax,N)=ApEnmax) can also be used as a feature to discern between dynamics. Moreover, the combined use of ApEnmax and rmax allows a better discrimination capacity to be accomplished, even in the presence of noise. We conducted our studies using real physiological time series and simulated signals corresponding to both low- and high-dimensional systems. When ApEnmax is incapable of discerning between different dynamics because of the noise presence, our results suggest that rmax provides additional information that can be useful for classification purposes. Based on cross-validation tests, we conclude that, for short length noisy signals, the joint use of ApEnmax and rmax can significantly decrease the misclassification rate of a linear classifier in comparison with their isolated use. Fil: Restrepo Rinckoar, Juan Felipe. Universidad Nacional de Entre Ríos. Facultad de Ingeniería. Departamento de Matemática e Informática. Laboratorio de Señales y Dinámicas no Lineales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Schlotthauer, Gaston. Universidad Nacional de Entre Ríos. Facultad de Ingeniería. Departamento de Matemática e Informática. Laboratorio de Señales y Dinámicas no Lineales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Torres, Maria Eugenia. Universidad Nacional de Entre Ríos. Facultad de Ingeniería. Departamento de Matemática e Informática. Laboratorio de Señales y Dinámicas no Lineales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
Approximate entropy (ApEn) has been widely used as an estimator of regularity in many scientific fields. It has proved to be a useful tool because of its ability to distinguish different system’s dynamics when there is only available short-length noisy data. Incorrect parameter selection (embedding dimension m, threshold r and data length N) and the presence of noise in the signal can undermine the ApEn discrimination capacity. In this work we show that rmax (ApEn(m,rmax,N)=ApEnmax) can also be used as a feature to discern between dynamics. Moreover, the combined use of ApEnmax and rmax allows a better discrimination capacity to be accomplished, even in the presence of noise. We conducted our studies using real physiological time series and simulated signals corresponding to both low- and high-dimensional systems. When ApEnmax is incapable of discerning between different dynamics because of the noise presence, our results suggest that rmax provides additional information that can be useful for classification purposes. Based on cross-validation tests, we conclude that, for short length noisy signals, the joint use of ApEnmax and rmax can significantly decrease the misclassification rate of a linear classifier in comparison with their isolated use. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/33590 Restrepo Rinckoar, Juan Felipe; Schlotthauer, Gaston; Torres, Maria Eugenia; Maximum approximate entropy and threshold: A new approach for regularity changes detection; Elsevier; Physica A: Statistical Mechanics and its Applications; 409; 5-2014; 97-109 0378-4371 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/33590 |
identifier_str_mv |
Restrepo Rinckoar, Juan Felipe; Schlotthauer, Gaston; Torres, Maria Eugenia; Maximum approximate entropy and threshold: A new approach for regularity changes detection; Elsevier; Physica A: Statistical Mechanics and its Applications; 409; 5-2014; 97-109 0378-4371 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.physa.2014.04.041 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0378437114003598 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1405.7637 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842979876607361024 |
score |
12.48226 |