Transfer entropy rate through Lempel-Ziv complexity
- Autores
- Restrepo Rinckoar, Juan Felipe; Mateos, Diego Martín; Schlotthauer, Gaston
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The transfer entropy and the transfer entropy rate are closely related concepts that measure information exchange between two dynamical systems. These measures allow us to study linear and nonlinear causality relations and can be estimated through the use of different methodologies. However, some of them assume a data model and/or are computationally expensive. This article depicts a methodology to estimate the transfer entropy rate between two systems through the Lempel-Ziv complexity. This methodology offers a set of advantages: It estimates the transfer entropy rate from two single discrete series of measures, it is not computationally expensive, and it does not assume any data model. The simulation results over three different unidirectional coupled dynamical systems suggest that this methodology can be used to assess the direction and strength of the information flow between systems. Moreover, it provides good estimations for short-length time series.
Fil: Restrepo Rinckoar, Juan Felipe. Consejo Nacional de Investigaciones Científicas y Técnicas. Universidad Nacional de Entre Ríos. Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática. Laboratorio de Señales y Dinámicas no Lineales; Argentina. Universidad Nacional de Entre Ríos. Facultad de Ingeniería. Departamento de Matemática e Informática. Laboratorio de Señales y Dinámicas no Lineales; Argentina
Fil: Mateos, Diego Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina. Universidad Autónoma de Entre Ríos. Facultad de Ciencia y Tecnología; Argentina
Fil: Schlotthauer, Gaston. Consejo Nacional de Investigaciones Científicas y Técnicas. Universidad Nacional de Entre Ríos. Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática. Laboratorio de Señales y Dinámicas no Lineales; Argentina. Universidad Nacional de Entre Ríos. Facultad de Ingeniería. Departamento de Matemática e Informática. Laboratorio de Señales y Dinámicas no Lineales; Argentina - Materia
-
Lempel-Ziv complexity
Transfer Entropy
Chaos
Non Linear Dynamic - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/142909
Ver los metadatos del registro completo
id |
CONICETDig_11810c0e3b2aa138f7d55986a3f6650f |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/142909 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Transfer entropy rate through Lempel-Ziv complexityRestrepo Rinckoar, Juan FelipeMateos, Diego MartínSchlotthauer, GastonLempel-Ziv complexityTransfer EntropyChaosNon Linear Dynamichttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The transfer entropy and the transfer entropy rate are closely related concepts that measure information exchange between two dynamical systems. These measures allow us to study linear and nonlinear causality relations and can be estimated through the use of different methodologies. However, some of them assume a data model and/or are computationally expensive. This article depicts a methodology to estimate the transfer entropy rate between two systems through the Lempel-Ziv complexity. This methodology offers a set of advantages: It estimates the transfer entropy rate from two single discrete series of measures, it is not computationally expensive, and it does not assume any data model. The simulation results over three different unidirectional coupled dynamical systems suggest that this methodology can be used to assess the direction and strength of the information flow between systems. Moreover, it provides good estimations for short-length time series.Fil: Restrepo Rinckoar, Juan Felipe. Consejo Nacional de Investigaciones Científicas y Técnicas. Universidad Nacional de Entre Ríos. Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática. Laboratorio de Señales y Dinámicas no Lineales; Argentina. Universidad Nacional de Entre Ríos. Facultad de Ingeniería. Departamento de Matemática e Informática. Laboratorio de Señales y Dinámicas no Lineales; ArgentinaFil: Mateos, Diego Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina. Universidad Autónoma de Entre Ríos. Facultad de Ciencia y Tecnología; ArgentinaFil: Schlotthauer, Gaston. Consejo Nacional de Investigaciones Científicas y Técnicas. Universidad Nacional de Entre Ríos. Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática. Laboratorio de Señales y Dinámicas no Lineales; Argentina. Universidad Nacional de Entre Ríos. Facultad de Ingeniería. Departamento de Matemática e Informática. Laboratorio de Señales y Dinámicas no Lineales; ArgentinaAmerican Physical Society2020-05-15info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/142909Restrepo Rinckoar, Juan Felipe; Mateos, Diego Martín; Schlotthauer, Gaston; Transfer entropy rate through Lempel-Ziv complexity; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 101; 5; 15-5-2020; 1-92470-0053CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.aps.org/doi/10.1103/PhysRevE.101.052117info:eu-repo/semantics/altIdentifier/doi//10.1103/PhysRevE.101.052117info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1903.07720info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:57:58Zoai:ri.conicet.gov.ar:11336/142909instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:57:58.738CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Transfer entropy rate through Lempel-Ziv complexity |
title |
Transfer entropy rate through Lempel-Ziv complexity |
spellingShingle |
Transfer entropy rate through Lempel-Ziv complexity Restrepo Rinckoar, Juan Felipe Lempel-Ziv complexity Transfer Entropy Chaos Non Linear Dynamic |
title_short |
Transfer entropy rate through Lempel-Ziv complexity |
title_full |
Transfer entropy rate through Lempel-Ziv complexity |
title_fullStr |
Transfer entropy rate through Lempel-Ziv complexity |
title_full_unstemmed |
Transfer entropy rate through Lempel-Ziv complexity |
title_sort |
Transfer entropy rate through Lempel-Ziv complexity |
dc.creator.none.fl_str_mv |
Restrepo Rinckoar, Juan Felipe Mateos, Diego Martín Schlotthauer, Gaston |
author |
Restrepo Rinckoar, Juan Felipe |
author_facet |
Restrepo Rinckoar, Juan Felipe Mateos, Diego Martín Schlotthauer, Gaston |
author_role |
author |
author2 |
Mateos, Diego Martín Schlotthauer, Gaston |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Lempel-Ziv complexity Transfer Entropy Chaos Non Linear Dynamic |
topic |
Lempel-Ziv complexity Transfer Entropy Chaos Non Linear Dynamic |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The transfer entropy and the transfer entropy rate are closely related concepts that measure information exchange between two dynamical systems. These measures allow us to study linear and nonlinear causality relations and can be estimated through the use of different methodologies. However, some of them assume a data model and/or are computationally expensive. This article depicts a methodology to estimate the transfer entropy rate between two systems through the Lempel-Ziv complexity. This methodology offers a set of advantages: It estimates the transfer entropy rate from two single discrete series of measures, it is not computationally expensive, and it does not assume any data model. The simulation results over three different unidirectional coupled dynamical systems suggest that this methodology can be used to assess the direction and strength of the information flow between systems. Moreover, it provides good estimations for short-length time series. Fil: Restrepo Rinckoar, Juan Felipe. Consejo Nacional de Investigaciones Científicas y Técnicas. Universidad Nacional de Entre Ríos. Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática. Laboratorio de Señales y Dinámicas no Lineales; Argentina. Universidad Nacional de Entre Ríos. Facultad de Ingeniería. Departamento de Matemática e Informática. Laboratorio de Señales y Dinámicas no Lineales; Argentina Fil: Mateos, Diego Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina. Universidad Autónoma de Entre Ríos. Facultad de Ciencia y Tecnología; Argentina Fil: Schlotthauer, Gaston. Consejo Nacional de Investigaciones Científicas y Técnicas. Universidad Nacional de Entre Ríos. Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática. Laboratorio de Señales y Dinámicas no Lineales; Argentina. Universidad Nacional de Entre Ríos. Facultad de Ingeniería. Departamento de Matemática e Informática. Laboratorio de Señales y Dinámicas no Lineales; Argentina |
description |
The transfer entropy and the transfer entropy rate are closely related concepts that measure information exchange between two dynamical systems. These measures allow us to study linear and nonlinear causality relations and can be estimated through the use of different methodologies. However, some of them assume a data model and/or are computationally expensive. This article depicts a methodology to estimate the transfer entropy rate between two systems through the Lempel-Ziv complexity. This methodology offers a set of advantages: It estimates the transfer entropy rate from two single discrete series of measures, it is not computationally expensive, and it does not assume any data model. The simulation results over three different unidirectional coupled dynamical systems suggest that this methodology can be used to assess the direction and strength of the information flow between systems. Moreover, it provides good estimations for short-length time series. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-05-15 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/142909 Restrepo Rinckoar, Juan Felipe; Mateos, Diego Martín; Schlotthauer, Gaston; Transfer entropy rate through Lempel-Ziv complexity; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 101; 5; 15-5-2020; 1-9 2470-0053 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/142909 |
identifier_str_mv |
Restrepo Rinckoar, Juan Felipe; Mateos, Diego Martín; Schlotthauer, Gaston; Transfer entropy rate through Lempel-Ziv complexity; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 101; 5; 15-5-2020; 1-9 2470-0053 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://link.aps.org/doi/10.1103/PhysRevE.101.052117 info:eu-repo/semantics/altIdentifier/doi//10.1103/PhysRevE.101.052117 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1903.07720 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Physical Society |
publisher.none.fl_str_mv |
American Physical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613731223339008 |
score |
13.070432 |