On the analysis and comparison of conformer-specific essential dynamics upon ligand binding to a protein
- Autores
- Grosso, Marcos Alberto; Kalstein, Adrian; Parisi, Gustavo Daniel; Roitberg, Adrián; Fernández Alberti, Sebastián
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The native state of a protein consists of an equilibrium of conformational states on an energy landscape rather than existing as a single static state. The co-existence of conformers with different ligand-affinities in a dynamical equilibrium is the basis for the conformational selection model for ligand binding. In this context, the development of theoretical methods that allow us to analyze not only the structural changes but also changes in the fluctuation patterns between conformers will contribute to elucidate the differential properties acquired upon ligand binding. Molecular dynamics simulations can provide the required information to explore these features. Its use in combination with subsequent essential dynamics analysis allows separating large concerted conformational rearrangements from irrelevant fluctuations. We present a novel procedure to define the size and composition of essential dynamics subspaces associated with ligand-bound and ligand-free conformations. These definitions allow us to compare essential dynamics subspaces between different conformers. Our procedure attempts to emphasize the main similarities and differences between the different essential dynamics in an unbiased way. Essential dynamics subspaces associated to conformational transitions can also be analyzed. As a test case, we study the glutaminase interacting protein (GIP), composed of a single PDZ domain. Both GIP ligand-free state and glutaminase L peptide-bound states are analyzed. Our findings concerning the relative changes in the flexibility pattern upon binding are in good agreement with experimental Nuclear Magnetic Resonance data.
Fil: Grosso, Marcos Alberto. Universidad Nacional de Quilmes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Kalstein, Adrian. Universidad Nacional de Quilmes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Parisi, Gustavo Daniel. Universidad Nacional de Quilmes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Roitberg, Adrián. University of Florida; Estados Unidos
Fil: Fernández Alberti, Sebastián. Universidad Nacional de Quilmes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Conformational dynamics
Subspaces
Eigen values
Molecular conformation
Nuclear magnetic resonance - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/98598
Ver los metadatos del registro completo
id |
CONICETDig_1a0820facf7091eb840d68b3c7c14e39 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/98598 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
On the analysis and comparison of conformer-specific essential dynamics upon ligand binding to a proteinGrosso, Marcos AlbertoKalstein, AdrianParisi, Gustavo DanielRoitberg, AdriánFernández Alberti, SebastiánConformational dynamicsSubspacesEigen valuesMolecular conformationNuclear magnetic resonancehttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1The native state of a protein consists of an equilibrium of conformational states on an energy landscape rather than existing as a single static state. The co-existence of conformers with different ligand-affinities in a dynamical equilibrium is the basis for the conformational selection model for ligand binding. In this context, the development of theoretical methods that allow us to analyze not only the structural changes but also changes in the fluctuation patterns between conformers will contribute to elucidate the differential properties acquired upon ligand binding. Molecular dynamics simulations can provide the required information to explore these features. Its use in combination with subsequent essential dynamics analysis allows separating large concerted conformational rearrangements from irrelevant fluctuations. We present a novel procedure to define the size and composition of essential dynamics subspaces associated with ligand-bound and ligand-free conformations. These definitions allow us to compare essential dynamics subspaces between different conformers. Our procedure attempts to emphasize the main similarities and differences between the different essential dynamics in an unbiased way. Essential dynamics subspaces associated to conformational transitions can also be analyzed. As a test case, we study the glutaminase interacting protein (GIP), composed of a single PDZ domain. Both GIP ligand-free state and glutaminase L peptide-bound states are analyzed. Our findings concerning the relative changes in the flexibility pattern upon binding are in good agreement with experimental Nuclear Magnetic Resonance data.Fil: Grosso, Marcos Alberto. Universidad Nacional de Quilmes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Kalstein, Adrian. Universidad Nacional de Quilmes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Parisi, Gustavo Daniel. Universidad Nacional de Quilmes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Roitberg, Adrián. University of Florida; Estados UnidosFil: Fernández Alberti, Sebastián. Universidad Nacional de Quilmes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaAmerican Institute of Physics2015-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/98598Grosso, Marcos Alberto; Kalstein, Adrian; Parisi, Gustavo Daniel; Roitberg, Adrián; Fernández Alberti, Sebastián; On the analysis and comparison of conformer-specific essential dynamics upon ligand binding to a protein; American Institute of Physics; Journal of Chemical Physics; 142; 24; 6-2015; 1-130021-9606CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://scitation.aip.org/content/aip/journal/jcp/142/24/10.1063/1.4922925info:eu-repo/semantics/altIdentifier/doi/10.1063/1.4922925info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:05:13Zoai:ri.conicet.gov.ar:11336/98598instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:05:13.781CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
On the analysis and comparison of conformer-specific essential dynamics upon ligand binding to a protein |
title |
On the analysis and comparison of conformer-specific essential dynamics upon ligand binding to a protein |
spellingShingle |
On the analysis and comparison of conformer-specific essential dynamics upon ligand binding to a protein Grosso, Marcos Alberto Conformational dynamics Subspaces Eigen values Molecular conformation Nuclear magnetic resonance |
title_short |
On the analysis and comparison of conformer-specific essential dynamics upon ligand binding to a protein |
title_full |
On the analysis and comparison of conformer-specific essential dynamics upon ligand binding to a protein |
title_fullStr |
On the analysis and comparison of conformer-specific essential dynamics upon ligand binding to a protein |
title_full_unstemmed |
On the analysis and comparison of conformer-specific essential dynamics upon ligand binding to a protein |
title_sort |
On the analysis and comparison of conformer-specific essential dynamics upon ligand binding to a protein |
dc.creator.none.fl_str_mv |
Grosso, Marcos Alberto Kalstein, Adrian Parisi, Gustavo Daniel Roitberg, Adrián Fernández Alberti, Sebastián |
author |
Grosso, Marcos Alberto |
author_facet |
Grosso, Marcos Alberto Kalstein, Adrian Parisi, Gustavo Daniel Roitberg, Adrián Fernández Alberti, Sebastián |
author_role |
author |
author2 |
Kalstein, Adrian Parisi, Gustavo Daniel Roitberg, Adrián Fernández Alberti, Sebastián |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Conformational dynamics Subspaces Eigen values Molecular conformation Nuclear magnetic resonance |
topic |
Conformational dynamics Subspaces Eigen values Molecular conformation Nuclear magnetic resonance |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The native state of a protein consists of an equilibrium of conformational states on an energy landscape rather than existing as a single static state. The co-existence of conformers with different ligand-affinities in a dynamical equilibrium is the basis for the conformational selection model for ligand binding. In this context, the development of theoretical methods that allow us to analyze not only the structural changes but also changes in the fluctuation patterns between conformers will contribute to elucidate the differential properties acquired upon ligand binding. Molecular dynamics simulations can provide the required information to explore these features. Its use in combination with subsequent essential dynamics analysis allows separating large concerted conformational rearrangements from irrelevant fluctuations. We present a novel procedure to define the size and composition of essential dynamics subspaces associated with ligand-bound and ligand-free conformations. These definitions allow us to compare essential dynamics subspaces between different conformers. Our procedure attempts to emphasize the main similarities and differences between the different essential dynamics in an unbiased way. Essential dynamics subspaces associated to conformational transitions can also be analyzed. As a test case, we study the glutaminase interacting protein (GIP), composed of a single PDZ domain. Both GIP ligand-free state and glutaminase L peptide-bound states are analyzed. Our findings concerning the relative changes in the flexibility pattern upon binding are in good agreement with experimental Nuclear Magnetic Resonance data. Fil: Grosso, Marcos Alberto. Universidad Nacional de Quilmes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Kalstein, Adrian. Universidad Nacional de Quilmes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Parisi, Gustavo Daniel. Universidad Nacional de Quilmes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Roitberg, Adrián. University of Florida; Estados Unidos Fil: Fernández Alberti, Sebastián. Universidad Nacional de Quilmes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
The native state of a protein consists of an equilibrium of conformational states on an energy landscape rather than existing as a single static state. The co-existence of conformers with different ligand-affinities in a dynamical equilibrium is the basis for the conformational selection model for ligand binding. In this context, the development of theoretical methods that allow us to analyze not only the structural changes but also changes in the fluctuation patterns between conformers will contribute to elucidate the differential properties acquired upon ligand binding. Molecular dynamics simulations can provide the required information to explore these features. Its use in combination with subsequent essential dynamics analysis allows separating large concerted conformational rearrangements from irrelevant fluctuations. We present a novel procedure to define the size and composition of essential dynamics subspaces associated with ligand-bound and ligand-free conformations. These definitions allow us to compare essential dynamics subspaces between different conformers. Our procedure attempts to emphasize the main similarities and differences between the different essential dynamics in an unbiased way. Essential dynamics subspaces associated to conformational transitions can also be analyzed. As a test case, we study the glutaminase interacting protein (GIP), composed of a single PDZ domain. Both GIP ligand-free state and glutaminase L peptide-bound states are analyzed. Our findings concerning the relative changes in the flexibility pattern upon binding are in good agreement with experimental Nuclear Magnetic Resonance data. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/98598 Grosso, Marcos Alberto; Kalstein, Adrian; Parisi, Gustavo Daniel; Roitberg, Adrián; Fernández Alberti, Sebastián; On the analysis and comparison of conformer-specific essential dynamics upon ligand binding to a protein; American Institute of Physics; Journal of Chemical Physics; 142; 24; 6-2015; 1-13 0021-9606 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/98598 |
identifier_str_mv |
Grosso, Marcos Alberto; Kalstein, Adrian; Parisi, Gustavo Daniel; Roitberg, Adrián; Fernández Alberti, Sebastián; On the analysis and comparison of conformer-specific essential dynamics upon ligand binding to a protein; American Institute of Physics; Journal of Chemical Physics; 142; 24; 6-2015; 1-13 0021-9606 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://scitation.aip.org/content/aip/journal/jcp/142/24/10.1063/1.4922925 info:eu-repo/semantics/altIdentifier/doi/10.1063/1.4922925 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Institute of Physics |
publisher.none.fl_str_mv |
American Institute of Physics |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613885507665920 |
score |
13.070432 |