Dominant species predict plant richness and biomass in global grasslands

Autores
Zhang, Pengfei; Seabloom, Eric; Foo, Jasmine; MacDougall, Andrew S.; Harpole, W. Stanley; Adler, Peter; Hautier, Yann; Eisenhauer, Nico; Spohn, Marie; Bakker, Jonathan; Lekberg, Ylva; Young, Alyssa L.; Carbutt, Clinton; Risch, Anita C.; Peri, Pablo Luis; Smith, Nicholas G.; Stevens, Carly J.; Prober, Suzanne M.; Knops, Johannes M. H.; Wardle, Glenda M.; Dickman, Christopher R.; Ebeling, Anne; Roscher, Christiane; Martinson, Holly M.; Martina, Jason P.; Power, Sally A.; Niu, Yujie; Ren, Zhengwei; Du, Guozhen; Virtanen, Risto; Tognetti, Pedro Maximiliano; Tedder, Michelle J.; Jentsch, Anke; Catford, Jane A.; Borer, Elizabeth
Año de publicación
2025
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The bidirectional relationship between plant species richness and community biomass is often variable and poorly resolved in natural grassland ecosystems, impeding progress in predicting impacts of environmental changes. Most biological communities have long-tailed species abundance distributions (for example, biomass, cover, number of individuals), a general property that may provide predictive power for species richness and community biomass. Here we show mathematical relationships between community characteristics and the abundance of dominant species arising from long-tailed distributions and test these predictions using observational and experimental data from 76 grassland sites across 6 continents. We find that community biomass provides little predictive ability for community richness, consistent with previous findings. By contrast, the relative abundance of dominant species quantitatively predicts species richness, whereas their absolute abundance quantitatively predicts community biomass under both ambient and altered environmental conditions, as expected mathematically. These results are robust to the type of abundance measure used. Three types of simulated data further show the generality of these results. Our integrative framework, arising from a few dominant species and mathematical properties of species abundance distributions, fills a persistent gap in our ability to predict community richness and biomass under ambient and anthropogenically altered conditions.
Fil: Zhang, Pengfei. University of Minnesota; Estados Unidos. Lanzhou University; China
Fil: Seabloom, Eric. University of Minnesota; Estados Unidos
Fil: Foo, Jasmine. University of Minnesota; Estados Unidos
Fil: MacDougall, Andrew S.. University of Guelph; Canadá
Fil: Harpole, W. Stanley. Helmholtz Centre for Environmental Research; Alemania. German Centre for Integrative Biodiversity Research; Alemania. Martin Luther University Halle-Wittenberg; Alemania
Fil: Adler, Peter. University of Utah; Estados Unidos
Fil: Hautier, Yann. Utrecht University; Países Bajos
Fil: Eisenhauer, Nico. German Centre for Integrative Biodiversity Research; Alemania. Universitat Leipzig; Alemania
Fil: Spohn, Marie. Swedish University of Agricultural Sciences; Suecia
Fil: Bakker, Jonathan. University of Washington; Estados Unidos
Fil: Lekberg, Ylva. University of Montana; Estados Unidos
Fil: Young, Alyssa L.. University of North Carolina; Estados Unidos
Fil: Carbutt, Clinton. University of KwaZulu-Natal; Sudáfrica. Ezemvelo KZN Wildlife; Sudáfrica
Fil: Risch, Anita C.. Swiss Federal Institute for Forest, Snow and Landscape Research; Suiza
Fil: Peri, Pablo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones y Transferencia de Santa Cruz. Universidad Tecnológica Nacional. Facultad Regional Santa Cruz. Centro de Investigaciones y Transferencia de Santa Cruz. Universidad Nacional de la Patagonia Austral. Centro de Investigaciones y Transferencia de Santa Cruz; Argentina. Instituto Nacional de Tecnología Agropecuaria; Argentina
Fil: Smith, Nicholas G.. Texas Tech University; Estados Unidos
Fil: Stevens, Carly J.. Lancaster University; Reino Unido
Fil: Prober, Suzanne M.. CSIRO Environment; Australia
Fil: Knops, Johannes M. H.. Xi’an Jiaotong-Liverpool University; China
Fil: Wardle, Glenda M.. University of Sydney; Australia
Fil: Dickman, Christopher R.. University of Sydney; Australia
Fil: Ebeling, Anne. Universitat Jena; Alemania
Fil: Roscher, Christiane. Helmholtz Centre for Environmental Research; Alemania. German Centre for Integrative Biodiversity Research; Alemania
Fil: Martinson, Holly M.. McDaniel College; Estados Unidos
Fil: Martina, Jason P.. Texas State University; Estados Unidos
Fil: Power, Sally A.. University of Western Sydney; Australia
Fil: Niu, Yujie. University of Bayreuth; Alemania. Gansu Agricultural University; China
Fil: Ren, Zhengwei. Lanzhou University; China
Fil: Du, Guozhen. Lanzhou University; China
Fil: Virtanen, Risto. University Of Oulu (oy);
Fil: Tognetti, Pedro Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina
Fil: Tedder, Michelle J.. University of KwaZulu-Natal; Sudáfrica
Fil: Jentsch, Anke. University of Bayreuth; Alemania
Fil: Catford, Jane A.. Kings College London (kcl);
Fil: Borer, Elizabeth. University of Minnesota; Estados Unidos
Materia
Plant species richness
Community biomass
Dominant species
Grasslands
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/267987

id CONICETDig_f6c0bb6a900cef91140028e80bced9dc
oai_identifier_str oai:ri.conicet.gov.ar:11336/267987
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Dominant species predict plant richness and biomass in global grasslandsZhang, PengfeiSeabloom, EricFoo, JasmineMacDougall, Andrew S.Harpole, W. StanleyAdler, PeterHautier, YannEisenhauer, NicoSpohn, MarieBakker, JonathanLekberg, YlvaYoung, Alyssa L.Carbutt, ClintonRisch, Anita C.Peri, Pablo LuisSmith, Nicholas G.Stevens, Carly J.Prober, Suzanne M.Knops, Johannes M. H.Wardle, Glenda M.Dickman, Christopher R.Ebeling, AnneRoscher, ChristianeMartinson, Holly M.Martina, Jason P.Power, Sally A.Niu, YujieRen, ZhengweiDu, GuozhenVirtanen, RistoTognetti, Pedro MaximilianoTedder, Michelle J.Jentsch, AnkeCatford, Jane A.Borer, ElizabethPlant species richnessCommunity biomassDominant speciesGrasslandshttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1The bidirectional relationship between plant species richness and community biomass is often variable and poorly resolved in natural grassland ecosystems, impeding progress in predicting impacts of environmental changes. Most biological communities have long-tailed species abundance distributions (for example, biomass, cover, number of individuals), a general property that may provide predictive power for species richness and community biomass. Here we show mathematical relationships between community characteristics and the abundance of dominant species arising from long-tailed distributions and test these predictions using observational and experimental data from 76 grassland sites across 6 continents. We find that community biomass provides little predictive ability for community richness, consistent with previous findings. By contrast, the relative abundance of dominant species quantitatively predicts species richness, whereas their absolute abundance quantitatively predicts community biomass under both ambient and altered environmental conditions, as expected mathematically. These results are robust to the type of abundance measure used. Three types of simulated data further show the generality of these results. Our integrative framework, arising from a few dominant species and mathematical properties of species abundance distributions, fills a persistent gap in our ability to predict community richness and biomass under ambient and anthropogenically altered conditions.Fil: Zhang, Pengfei. University of Minnesota; Estados Unidos. Lanzhou University; ChinaFil: Seabloom, Eric. University of Minnesota; Estados UnidosFil: Foo, Jasmine. University of Minnesota; Estados UnidosFil: MacDougall, Andrew S.. University of Guelph; CanadáFil: Harpole, W. Stanley. Helmholtz Centre for Environmental Research; Alemania. German Centre for Integrative Biodiversity Research; Alemania. Martin Luther University Halle-Wittenberg; AlemaniaFil: Adler, Peter. University of Utah; Estados UnidosFil: Hautier, Yann. Utrecht University; Países BajosFil: Eisenhauer, Nico. German Centre for Integrative Biodiversity Research; Alemania. Universitat Leipzig; AlemaniaFil: Spohn, Marie. Swedish University of Agricultural Sciences; SueciaFil: Bakker, Jonathan. University of Washington; Estados UnidosFil: Lekberg, Ylva. University of Montana; Estados UnidosFil: Young, Alyssa L.. University of North Carolina; Estados UnidosFil: Carbutt, Clinton. University of KwaZulu-Natal; Sudáfrica. Ezemvelo KZN Wildlife; SudáfricaFil: Risch, Anita C.. Swiss Federal Institute for Forest, Snow and Landscape Research; SuizaFil: Peri, Pablo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones y Transferencia de Santa Cruz. Universidad Tecnológica Nacional. Facultad Regional Santa Cruz. Centro de Investigaciones y Transferencia de Santa Cruz. Universidad Nacional de la Patagonia Austral. Centro de Investigaciones y Transferencia de Santa Cruz; Argentina. Instituto Nacional de Tecnología Agropecuaria; ArgentinaFil: Smith, Nicholas G.. Texas Tech University; Estados UnidosFil: Stevens, Carly J.. Lancaster University; Reino UnidoFil: Prober, Suzanne M.. CSIRO Environment; AustraliaFil: Knops, Johannes M. H.. Xi’an Jiaotong-Liverpool University; ChinaFil: Wardle, Glenda M.. University of Sydney; AustraliaFil: Dickman, Christopher R.. University of Sydney; AustraliaFil: Ebeling, Anne. Universitat Jena; AlemaniaFil: Roscher, Christiane. Helmholtz Centre for Environmental Research; Alemania. German Centre for Integrative Biodiversity Research; AlemaniaFil: Martinson, Holly M.. McDaniel College; Estados UnidosFil: Martina, Jason P.. Texas State University; Estados UnidosFil: Power, Sally A.. University of Western Sydney; AustraliaFil: Niu, Yujie. University of Bayreuth; Alemania. Gansu Agricultural University; ChinaFil: Ren, Zhengwei. Lanzhou University; ChinaFil: Du, Guozhen. Lanzhou University; ChinaFil: Virtanen, Risto. University Of Oulu (oy);Fil: Tognetti, Pedro Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; ArgentinaFil: Tedder, Michelle J.. University of KwaZulu-Natal; SudáfricaFil: Jentsch, Anke. University of Bayreuth; AlemaniaFil: Catford, Jane A.. Kings College London (kcl);Fil: Borer, Elizabeth. University of Minnesota; Estados UnidosNature2025-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/267987Zhang, Pengfei; Seabloom, Eric; Foo, Jasmine; MacDougall, Andrew S.; Harpole, W. Stanley; et al.; Dominant species predict plant richness and biomass in global grasslands; Nature; Nature Ecology & Evolution; 9; 6; 6-2025; 924-9362397-334XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41559-025-02701-yinfo:eu-repo/semantics/altIdentifier/doi/10.1038/s41559-025-02701-yinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:11:33Zoai:ri.conicet.gov.ar:11336/267987instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:11:34.069CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Dominant species predict plant richness and biomass in global grasslands
title Dominant species predict plant richness and biomass in global grasslands
spellingShingle Dominant species predict plant richness and biomass in global grasslands
Zhang, Pengfei
Plant species richness
Community biomass
Dominant species
Grasslands
title_short Dominant species predict plant richness and biomass in global grasslands
title_full Dominant species predict plant richness and biomass in global grasslands
title_fullStr Dominant species predict plant richness and biomass in global grasslands
title_full_unstemmed Dominant species predict plant richness and biomass in global grasslands
title_sort Dominant species predict plant richness and biomass in global grasslands
dc.creator.none.fl_str_mv Zhang, Pengfei
Seabloom, Eric
Foo, Jasmine
MacDougall, Andrew S.
Harpole, W. Stanley
Adler, Peter
Hautier, Yann
Eisenhauer, Nico
Spohn, Marie
Bakker, Jonathan
Lekberg, Ylva
Young, Alyssa L.
Carbutt, Clinton
Risch, Anita C.
Peri, Pablo Luis
Smith, Nicholas G.
Stevens, Carly J.
Prober, Suzanne M.
Knops, Johannes M. H.
Wardle, Glenda M.
Dickman, Christopher R.
Ebeling, Anne
Roscher, Christiane
Martinson, Holly M.
Martina, Jason P.
Power, Sally A.
Niu, Yujie
Ren, Zhengwei
Du, Guozhen
Virtanen, Risto
Tognetti, Pedro Maximiliano
Tedder, Michelle J.
Jentsch, Anke
Catford, Jane A.
Borer, Elizabeth
author Zhang, Pengfei
author_facet Zhang, Pengfei
Seabloom, Eric
Foo, Jasmine
MacDougall, Andrew S.
Harpole, W. Stanley
Adler, Peter
Hautier, Yann
Eisenhauer, Nico
Spohn, Marie
Bakker, Jonathan
Lekberg, Ylva
Young, Alyssa L.
Carbutt, Clinton
Risch, Anita C.
Peri, Pablo Luis
Smith, Nicholas G.
Stevens, Carly J.
Prober, Suzanne M.
Knops, Johannes M. H.
Wardle, Glenda M.
Dickman, Christopher R.
Ebeling, Anne
Roscher, Christiane
Martinson, Holly M.
Martina, Jason P.
Power, Sally A.
Niu, Yujie
Ren, Zhengwei
Du, Guozhen
Virtanen, Risto
Tognetti, Pedro Maximiliano
Tedder, Michelle J.
Jentsch, Anke
Catford, Jane A.
Borer, Elizabeth
author_role author
author2 Seabloom, Eric
Foo, Jasmine
MacDougall, Andrew S.
Harpole, W. Stanley
Adler, Peter
Hautier, Yann
Eisenhauer, Nico
Spohn, Marie
Bakker, Jonathan
Lekberg, Ylva
Young, Alyssa L.
Carbutt, Clinton
Risch, Anita C.
Peri, Pablo Luis
Smith, Nicholas G.
Stevens, Carly J.
Prober, Suzanne M.
Knops, Johannes M. H.
Wardle, Glenda M.
Dickman, Christopher R.
Ebeling, Anne
Roscher, Christiane
Martinson, Holly M.
Martina, Jason P.
Power, Sally A.
Niu, Yujie
Ren, Zhengwei
Du, Guozhen
Virtanen, Risto
Tognetti, Pedro Maximiliano
Tedder, Michelle J.
Jentsch, Anke
Catford, Jane A.
Borer, Elizabeth
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Plant species richness
Community biomass
Dominant species
Grasslands
topic Plant species richness
Community biomass
Dominant species
Grasslands
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The bidirectional relationship between plant species richness and community biomass is often variable and poorly resolved in natural grassland ecosystems, impeding progress in predicting impacts of environmental changes. Most biological communities have long-tailed species abundance distributions (for example, biomass, cover, number of individuals), a general property that may provide predictive power for species richness and community biomass. Here we show mathematical relationships between community characteristics and the abundance of dominant species arising from long-tailed distributions and test these predictions using observational and experimental data from 76 grassland sites across 6 continents. We find that community biomass provides little predictive ability for community richness, consistent with previous findings. By contrast, the relative abundance of dominant species quantitatively predicts species richness, whereas their absolute abundance quantitatively predicts community biomass under both ambient and altered environmental conditions, as expected mathematically. These results are robust to the type of abundance measure used. Three types of simulated data further show the generality of these results. Our integrative framework, arising from a few dominant species and mathematical properties of species abundance distributions, fills a persistent gap in our ability to predict community richness and biomass under ambient and anthropogenically altered conditions.
Fil: Zhang, Pengfei. University of Minnesota; Estados Unidos. Lanzhou University; China
Fil: Seabloom, Eric. University of Minnesota; Estados Unidos
Fil: Foo, Jasmine. University of Minnesota; Estados Unidos
Fil: MacDougall, Andrew S.. University of Guelph; Canadá
Fil: Harpole, W. Stanley. Helmholtz Centre for Environmental Research; Alemania. German Centre for Integrative Biodiversity Research; Alemania. Martin Luther University Halle-Wittenberg; Alemania
Fil: Adler, Peter. University of Utah; Estados Unidos
Fil: Hautier, Yann. Utrecht University; Países Bajos
Fil: Eisenhauer, Nico. German Centre for Integrative Biodiversity Research; Alemania. Universitat Leipzig; Alemania
Fil: Spohn, Marie. Swedish University of Agricultural Sciences; Suecia
Fil: Bakker, Jonathan. University of Washington; Estados Unidos
Fil: Lekberg, Ylva. University of Montana; Estados Unidos
Fil: Young, Alyssa L.. University of North Carolina; Estados Unidos
Fil: Carbutt, Clinton. University of KwaZulu-Natal; Sudáfrica. Ezemvelo KZN Wildlife; Sudáfrica
Fil: Risch, Anita C.. Swiss Federal Institute for Forest, Snow and Landscape Research; Suiza
Fil: Peri, Pablo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones y Transferencia de Santa Cruz. Universidad Tecnológica Nacional. Facultad Regional Santa Cruz. Centro de Investigaciones y Transferencia de Santa Cruz. Universidad Nacional de la Patagonia Austral. Centro de Investigaciones y Transferencia de Santa Cruz; Argentina. Instituto Nacional de Tecnología Agropecuaria; Argentina
Fil: Smith, Nicholas G.. Texas Tech University; Estados Unidos
Fil: Stevens, Carly J.. Lancaster University; Reino Unido
Fil: Prober, Suzanne M.. CSIRO Environment; Australia
Fil: Knops, Johannes M. H.. Xi’an Jiaotong-Liverpool University; China
Fil: Wardle, Glenda M.. University of Sydney; Australia
Fil: Dickman, Christopher R.. University of Sydney; Australia
Fil: Ebeling, Anne. Universitat Jena; Alemania
Fil: Roscher, Christiane. Helmholtz Centre for Environmental Research; Alemania. German Centre for Integrative Biodiversity Research; Alemania
Fil: Martinson, Holly M.. McDaniel College; Estados Unidos
Fil: Martina, Jason P.. Texas State University; Estados Unidos
Fil: Power, Sally A.. University of Western Sydney; Australia
Fil: Niu, Yujie. University of Bayreuth; Alemania. Gansu Agricultural University; China
Fil: Ren, Zhengwei. Lanzhou University; China
Fil: Du, Guozhen. Lanzhou University; China
Fil: Virtanen, Risto. University Of Oulu (oy);
Fil: Tognetti, Pedro Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina
Fil: Tedder, Michelle J.. University of KwaZulu-Natal; Sudáfrica
Fil: Jentsch, Anke. University of Bayreuth; Alemania
Fil: Catford, Jane A.. Kings College London (kcl);
Fil: Borer, Elizabeth. University of Minnesota; Estados Unidos
description The bidirectional relationship between plant species richness and community biomass is often variable and poorly resolved in natural grassland ecosystems, impeding progress in predicting impacts of environmental changes. Most biological communities have long-tailed species abundance distributions (for example, biomass, cover, number of individuals), a general property that may provide predictive power for species richness and community biomass. Here we show mathematical relationships between community characteristics and the abundance of dominant species arising from long-tailed distributions and test these predictions using observational and experimental data from 76 grassland sites across 6 continents. We find that community biomass provides little predictive ability for community richness, consistent with previous findings. By contrast, the relative abundance of dominant species quantitatively predicts species richness, whereas their absolute abundance quantitatively predicts community biomass under both ambient and altered environmental conditions, as expected mathematically. These results are robust to the type of abundance measure used. Three types of simulated data further show the generality of these results. Our integrative framework, arising from a few dominant species and mathematical properties of species abundance distributions, fills a persistent gap in our ability to predict community richness and biomass under ambient and anthropogenically altered conditions.
publishDate 2025
dc.date.none.fl_str_mv 2025-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/267987
Zhang, Pengfei; Seabloom, Eric; Foo, Jasmine; MacDougall, Andrew S.; Harpole, W. Stanley; et al.; Dominant species predict plant richness and biomass in global grasslands; Nature; Nature Ecology & Evolution; 9; 6; 6-2025; 924-936
2397-334X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/267987
identifier_str_mv Zhang, Pengfei; Seabloom, Eric; Foo, Jasmine; MacDougall, Andrew S.; Harpole, W. Stanley; et al.; Dominant species predict plant richness and biomass in global grasslands; Nature; Nature Ecology & Evolution; 9; 6; 6-2025; 924-936
2397-334X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41559-025-02701-y
info:eu-repo/semantics/altIdentifier/doi/10.1038/s41559-025-02701-y
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Nature
publisher.none.fl_str_mv Nature
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842270163135627264
score 13.13397