Dominant species predict plant richness and biomass in global grasslands
- Autores
- Zhang, Pengfei; Seabloom, Eric; Foo, Jasmine; MacDougall, Andrew S.; Harpole, W. Stanley; Adler, Peter; Hautier, Yann; Eisenhauer, Nico; Spohn, Marie; Bakker, Jonathan; Lekberg, Ylva; Young, Alyssa L.; Carbutt, Clinton; Risch, Anita C.; Peri, Pablo Luis; Smith, Nicholas G.; Stevens, Carly J.; Prober, Suzanne M.; Knops, Johannes M. H.; Wardle, Glenda M.; Dickman, Christopher R.; Ebeling, Anne; Roscher, Christiane; Martinson, Holly M.; Martina, Jason P.; Power, Sally A.; Niu, Yujie; Ren, Zhengwei; Du, Guozhen; Virtanen, Risto; Tognetti, Pedro Maximiliano; Tedder, Michelle J.; Jentsch, Anke; Catford, Jane A.; Borer, Elizabeth
- Año de publicación
- 2025
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The bidirectional relationship between plant species richness and community biomass is often variable and poorly resolved in natural grassland ecosystems, impeding progress in predicting impacts of environmental changes. Most biological communities have long-tailed species abundance distributions (for example, biomass, cover, number of individuals), a general property that may provide predictive power for species richness and community biomass. Here we show mathematical relationships between community characteristics and the abundance of dominant species arising from long-tailed distributions and test these predictions using observational and experimental data from 76 grassland sites across 6 continents. We find that community biomass provides little predictive ability for community richness, consistent with previous findings. By contrast, the relative abundance of dominant species quantitatively predicts species richness, whereas their absolute abundance quantitatively predicts community biomass under both ambient and altered environmental conditions, as expected mathematically. These results are robust to the type of abundance measure used. Three types of simulated data further show the generality of these results. Our integrative framework, arising from a few dominant species and mathematical properties of species abundance distributions, fills a persistent gap in our ability to predict community richness and biomass under ambient and anthropogenically altered conditions.
Fil: Zhang, Pengfei. University of Minnesota; Estados Unidos. Lanzhou University; China
Fil: Seabloom, Eric. University of Minnesota; Estados Unidos
Fil: Foo, Jasmine. University of Minnesota; Estados Unidos
Fil: MacDougall, Andrew S.. University of Guelph; Canadá
Fil: Harpole, W. Stanley. Helmholtz Centre for Environmental Research; Alemania. German Centre for Integrative Biodiversity Research; Alemania. Martin Luther University Halle-Wittenberg; Alemania
Fil: Adler, Peter. University of Utah; Estados Unidos
Fil: Hautier, Yann. Utrecht University; Países Bajos
Fil: Eisenhauer, Nico. German Centre for Integrative Biodiversity Research; Alemania. Universitat Leipzig; Alemania
Fil: Spohn, Marie. Swedish University of Agricultural Sciences; Suecia
Fil: Bakker, Jonathan. University of Washington; Estados Unidos
Fil: Lekberg, Ylva. University of Montana; Estados Unidos
Fil: Young, Alyssa L.. University of North Carolina; Estados Unidos
Fil: Carbutt, Clinton. University of KwaZulu-Natal; Sudáfrica. Ezemvelo KZN Wildlife; Sudáfrica
Fil: Risch, Anita C.. Swiss Federal Institute for Forest, Snow and Landscape Research; Suiza
Fil: Peri, Pablo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones y Transferencia de Santa Cruz. Universidad Tecnológica Nacional. Facultad Regional Santa Cruz. Centro de Investigaciones y Transferencia de Santa Cruz. Universidad Nacional de la Patagonia Austral. Centro de Investigaciones y Transferencia de Santa Cruz; Argentina. Instituto Nacional de Tecnología Agropecuaria; Argentina
Fil: Smith, Nicholas G.. Texas Tech University; Estados Unidos
Fil: Stevens, Carly J.. Lancaster University; Reino Unido
Fil: Prober, Suzanne M.. CSIRO Environment; Australia
Fil: Knops, Johannes M. H.. Xi’an Jiaotong-Liverpool University; China
Fil: Wardle, Glenda M.. University of Sydney; Australia
Fil: Dickman, Christopher R.. University of Sydney; Australia
Fil: Ebeling, Anne. Universitat Jena; Alemania
Fil: Roscher, Christiane. Helmholtz Centre for Environmental Research; Alemania. German Centre for Integrative Biodiversity Research; Alemania
Fil: Martinson, Holly M.. McDaniel College; Estados Unidos
Fil: Martina, Jason P.. Texas State University; Estados Unidos
Fil: Power, Sally A.. University of Western Sydney; Australia
Fil: Niu, Yujie. University of Bayreuth; Alemania. Gansu Agricultural University; China
Fil: Ren, Zhengwei. Lanzhou University; China
Fil: Du, Guozhen. Lanzhou University; China
Fil: Virtanen, Risto. University Of Oulu (oy);
Fil: Tognetti, Pedro Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina
Fil: Tedder, Michelle J.. University of KwaZulu-Natal; Sudáfrica
Fil: Jentsch, Anke. University of Bayreuth; Alemania
Fil: Catford, Jane A.. Kings College London (kcl);
Fil: Borer, Elizabeth. University of Minnesota; Estados Unidos - Materia
-
Plant species richness
Community biomass
Dominant species
Grasslands - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/267987
Ver los metadatos del registro completo
id |
CONICETDig_f6c0bb6a900cef91140028e80bced9dc |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/267987 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Dominant species predict plant richness and biomass in global grasslandsZhang, PengfeiSeabloom, EricFoo, JasmineMacDougall, Andrew S.Harpole, W. StanleyAdler, PeterHautier, YannEisenhauer, NicoSpohn, MarieBakker, JonathanLekberg, YlvaYoung, Alyssa L.Carbutt, ClintonRisch, Anita C.Peri, Pablo LuisSmith, Nicholas G.Stevens, Carly J.Prober, Suzanne M.Knops, Johannes M. H.Wardle, Glenda M.Dickman, Christopher R.Ebeling, AnneRoscher, ChristianeMartinson, Holly M.Martina, Jason P.Power, Sally A.Niu, YujieRen, ZhengweiDu, GuozhenVirtanen, RistoTognetti, Pedro MaximilianoTedder, Michelle J.Jentsch, AnkeCatford, Jane A.Borer, ElizabethPlant species richnessCommunity biomassDominant speciesGrasslandshttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1The bidirectional relationship between plant species richness and community biomass is often variable and poorly resolved in natural grassland ecosystems, impeding progress in predicting impacts of environmental changes. Most biological communities have long-tailed species abundance distributions (for example, biomass, cover, number of individuals), a general property that may provide predictive power for species richness and community biomass. Here we show mathematical relationships between community characteristics and the abundance of dominant species arising from long-tailed distributions and test these predictions using observational and experimental data from 76 grassland sites across 6 continents. We find that community biomass provides little predictive ability for community richness, consistent with previous findings. By contrast, the relative abundance of dominant species quantitatively predicts species richness, whereas their absolute abundance quantitatively predicts community biomass under both ambient and altered environmental conditions, as expected mathematically. These results are robust to the type of abundance measure used. Three types of simulated data further show the generality of these results. Our integrative framework, arising from a few dominant species and mathematical properties of species abundance distributions, fills a persistent gap in our ability to predict community richness and biomass under ambient and anthropogenically altered conditions.Fil: Zhang, Pengfei. University of Minnesota; Estados Unidos. Lanzhou University; ChinaFil: Seabloom, Eric. University of Minnesota; Estados UnidosFil: Foo, Jasmine. University of Minnesota; Estados UnidosFil: MacDougall, Andrew S.. University of Guelph; CanadáFil: Harpole, W. Stanley. Helmholtz Centre for Environmental Research; Alemania. German Centre for Integrative Biodiversity Research; Alemania. Martin Luther University Halle-Wittenberg; AlemaniaFil: Adler, Peter. University of Utah; Estados UnidosFil: Hautier, Yann. Utrecht University; Países BajosFil: Eisenhauer, Nico. German Centre for Integrative Biodiversity Research; Alemania. Universitat Leipzig; AlemaniaFil: Spohn, Marie. Swedish University of Agricultural Sciences; SueciaFil: Bakker, Jonathan. University of Washington; Estados UnidosFil: Lekberg, Ylva. University of Montana; Estados UnidosFil: Young, Alyssa L.. University of North Carolina; Estados UnidosFil: Carbutt, Clinton. University of KwaZulu-Natal; Sudáfrica. Ezemvelo KZN Wildlife; SudáfricaFil: Risch, Anita C.. Swiss Federal Institute for Forest, Snow and Landscape Research; SuizaFil: Peri, Pablo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones y Transferencia de Santa Cruz. Universidad Tecnológica Nacional. Facultad Regional Santa Cruz. Centro de Investigaciones y Transferencia de Santa Cruz. Universidad Nacional de la Patagonia Austral. Centro de Investigaciones y Transferencia de Santa Cruz; Argentina. Instituto Nacional de Tecnología Agropecuaria; ArgentinaFil: Smith, Nicholas G.. Texas Tech University; Estados UnidosFil: Stevens, Carly J.. Lancaster University; Reino UnidoFil: Prober, Suzanne M.. CSIRO Environment; AustraliaFil: Knops, Johannes M. H.. Xi’an Jiaotong-Liverpool University; ChinaFil: Wardle, Glenda M.. University of Sydney; AustraliaFil: Dickman, Christopher R.. University of Sydney; AustraliaFil: Ebeling, Anne. Universitat Jena; AlemaniaFil: Roscher, Christiane. Helmholtz Centre for Environmental Research; Alemania. German Centre for Integrative Biodiversity Research; AlemaniaFil: Martinson, Holly M.. McDaniel College; Estados UnidosFil: Martina, Jason P.. Texas State University; Estados UnidosFil: Power, Sally A.. University of Western Sydney; AustraliaFil: Niu, Yujie. University of Bayreuth; Alemania. Gansu Agricultural University; ChinaFil: Ren, Zhengwei. Lanzhou University; ChinaFil: Du, Guozhen. Lanzhou University; ChinaFil: Virtanen, Risto. University Of Oulu (oy);Fil: Tognetti, Pedro Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; ArgentinaFil: Tedder, Michelle J.. University of KwaZulu-Natal; SudáfricaFil: Jentsch, Anke. University of Bayreuth; AlemaniaFil: Catford, Jane A.. Kings College London (kcl);Fil: Borer, Elizabeth. University of Minnesota; Estados UnidosNature2025-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/267987Zhang, Pengfei; Seabloom, Eric; Foo, Jasmine; MacDougall, Andrew S.; Harpole, W. Stanley; et al.; Dominant species predict plant richness and biomass in global grasslands; Nature; Nature Ecology & Evolution; 9; 6; 6-2025; 924-9362397-334XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41559-025-02701-yinfo:eu-repo/semantics/altIdentifier/doi/10.1038/s41559-025-02701-yinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:11:33Zoai:ri.conicet.gov.ar:11336/267987instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:11:34.069CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Dominant species predict plant richness and biomass in global grasslands |
title |
Dominant species predict plant richness and biomass in global grasslands |
spellingShingle |
Dominant species predict plant richness and biomass in global grasslands Zhang, Pengfei Plant species richness Community biomass Dominant species Grasslands |
title_short |
Dominant species predict plant richness and biomass in global grasslands |
title_full |
Dominant species predict plant richness and biomass in global grasslands |
title_fullStr |
Dominant species predict plant richness and biomass in global grasslands |
title_full_unstemmed |
Dominant species predict plant richness and biomass in global grasslands |
title_sort |
Dominant species predict plant richness and biomass in global grasslands |
dc.creator.none.fl_str_mv |
Zhang, Pengfei Seabloom, Eric Foo, Jasmine MacDougall, Andrew S. Harpole, W. Stanley Adler, Peter Hautier, Yann Eisenhauer, Nico Spohn, Marie Bakker, Jonathan Lekberg, Ylva Young, Alyssa L. Carbutt, Clinton Risch, Anita C. Peri, Pablo Luis Smith, Nicholas G. Stevens, Carly J. Prober, Suzanne M. Knops, Johannes M. H. Wardle, Glenda M. Dickman, Christopher R. Ebeling, Anne Roscher, Christiane Martinson, Holly M. Martina, Jason P. Power, Sally A. Niu, Yujie Ren, Zhengwei Du, Guozhen Virtanen, Risto Tognetti, Pedro Maximiliano Tedder, Michelle J. Jentsch, Anke Catford, Jane A. Borer, Elizabeth |
author |
Zhang, Pengfei |
author_facet |
Zhang, Pengfei Seabloom, Eric Foo, Jasmine MacDougall, Andrew S. Harpole, W. Stanley Adler, Peter Hautier, Yann Eisenhauer, Nico Spohn, Marie Bakker, Jonathan Lekberg, Ylva Young, Alyssa L. Carbutt, Clinton Risch, Anita C. Peri, Pablo Luis Smith, Nicholas G. Stevens, Carly J. Prober, Suzanne M. Knops, Johannes M. H. Wardle, Glenda M. Dickman, Christopher R. Ebeling, Anne Roscher, Christiane Martinson, Holly M. Martina, Jason P. Power, Sally A. Niu, Yujie Ren, Zhengwei Du, Guozhen Virtanen, Risto Tognetti, Pedro Maximiliano Tedder, Michelle J. Jentsch, Anke Catford, Jane A. Borer, Elizabeth |
author_role |
author |
author2 |
Seabloom, Eric Foo, Jasmine MacDougall, Andrew S. Harpole, W. Stanley Adler, Peter Hautier, Yann Eisenhauer, Nico Spohn, Marie Bakker, Jonathan Lekberg, Ylva Young, Alyssa L. Carbutt, Clinton Risch, Anita C. Peri, Pablo Luis Smith, Nicholas G. Stevens, Carly J. Prober, Suzanne M. Knops, Johannes M. H. Wardle, Glenda M. Dickman, Christopher R. Ebeling, Anne Roscher, Christiane Martinson, Holly M. Martina, Jason P. Power, Sally A. Niu, Yujie Ren, Zhengwei Du, Guozhen Virtanen, Risto Tognetti, Pedro Maximiliano Tedder, Michelle J. Jentsch, Anke Catford, Jane A. Borer, Elizabeth |
author2_role |
author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author |
dc.subject.none.fl_str_mv |
Plant species richness Community biomass Dominant species Grasslands |
topic |
Plant species richness Community biomass Dominant species Grasslands |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The bidirectional relationship between plant species richness and community biomass is often variable and poorly resolved in natural grassland ecosystems, impeding progress in predicting impacts of environmental changes. Most biological communities have long-tailed species abundance distributions (for example, biomass, cover, number of individuals), a general property that may provide predictive power for species richness and community biomass. Here we show mathematical relationships between community characteristics and the abundance of dominant species arising from long-tailed distributions and test these predictions using observational and experimental data from 76 grassland sites across 6 continents. We find that community biomass provides little predictive ability for community richness, consistent with previous findings. By contrast, the relative abundance of dominant species quantitatively predicts species richness, whereas their absolute abundance quantitatively predicts community biomass under both ambient and altered environmental conditions, as expected mathematically. These results are robust to the type of abundance measure used. Three types of simulated data further show the generality of these results. Our integrative framework, arising from a few dominant species and mathematical properties of species abundance distributions, fills a persistent gap in our ability to predict community richness and biomass under ambient and anthropogenically altered conditions. Fil: Zhang, Pengfei. University of Minnesota; Estados Unidos. Lanzhou University; China Fil: Seabloom, Eric. University of Minnesota; Estados Unidos Fil: Foo, Jasmine. University of Minnesota; Estados Unidos Fil: MacDougall, Andrew S.. University of Guelph; Canadá Fil: Harpole, W. Stanley. Helmholtz Centre for Environmental Research; Alemania. German Centre for Integrative Biodiversity Research; Alemania. Martin Luther University Halle-Wittenberg; Alemania Fil: Adler, Peter. University of Utah; Estados Unidos Fil: Hautier, Yann. Utrecht University; Países Bajos Fil: Eisenhauer, Nico. German Centre for Integrative Biodiversity Research; Alemania. Universitat Leipzig; Alemania Fil: Spohn, Marie. Swedish University of Agricultural Sciences; Suecia Fil: Bakker, Jonathan. University of Washington; Estados Unidos Fil: Lekberg, Ylva. University of Montana; Estados Unidos Fil: Young, Alyssa L.. University of North Carolina; Estados Unidos Fil: Carbutt, Clinton. University of KwaZulu-Natal; Sudáfrica. Ezemvelo KZN Wildlife; Sudáfrica Fil: Risch, Anita C.. Swiss Federal Institute for Forest, Snow and Landscape Research; Suiza Fil: Peri, Pablo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones y Transferencia de Santa Cruz. Universidad Tecnológica Nacional. Facultad Regional Santa Cruz. Centro de Investigaciones y Transferencia de Santa Cruz. Universidad Nacional de la Patagonia Austral. Centro de Investigaciones y Transferencia de Santa Cruz; Argentina. Instituto Nacional de Tecnología Agropecuaria; Argentina Fil: Smith, Nicholas G.. Texas Tech University; Estados Unidos Fil: Stevens, Carly J.. Lancaster University; Reino Unido Fil: Prober, Suzanne M.. CSIRO Environment; Australia Fil: Knops, Johannes M. H.. Xi’an Jiaotong-Liverpool University; China Fil: Wardle, Glenda M.. University of Sydney; Australia Fil: Dickman, Christopher R.. University of Sydney; Australia Fil: Ebeling, Anne. Universitat Jena; Alemania Fil: Roscher, Christiane. Helmholtz Centre for Environmental Research; Alemania. German Centre for Integrative Biodiversity Research; Alemania Fil: Martinson, Holly M.. McDaniel College; Estados Unidos Fil: Martina, Jason P.. Texas State University; Estados Unidos Fil: Power, Sally A.. University of Western Sydney; Australia Fil: Niu, Yujie. University of Bayreuth; Alemania. Gansu Agricultural University; China Fil: Ren, Zhengwei. Lanzhou University; China Fil: Du, Guozhen. Lanzhou University; China Fil: Virtanen, Risto. University Of Oulu (oy); Fil: Tognetti, Pedro Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina Fil: Tedder, Michelle J.. University of KwaZulu-Natal; Sudáfrica Fil: Jentsch, Anke. University of Bayreuth; Alemania Fil: Catford, Jane A.. Kings College London (kcl); Fil: Borer, Elizabeth. University of Minnesota; Estados Unidos |
description |
The bidirectional relationship between plant species richness and community biomass is often variable and poorly resolved in natural grassland ecosystems, impeding progress in predicting impacts of environmental changes. Most biological communities have long-tailed species abundance distributions (for example, biomass, cover, number of individuals), a general property that may provide predictive power for species richness and community biomass. Here we show mathematical relationships between community characteristics and the abundance of dominant species arising from long-tailed distributions and test these predictions using observational and experimental data from 76 grassland sites across 6 continents. We find that community biomass provides little predictive ability for community richness, consistent with previous findings. By contrast, the relative abundance of dominant species quantitatively predicts species richness, whereas their absolute abundance quantitatively predicts community biomass under both ambient and altered environmental conditions, as expected mathematically. These results are robust to the type of abundance measure used. Three types of simulated data further show the generality of these results. Our integrative framework, arising from a few dominant species and mathematical properties of species abundance distributions, fills a persistent gap in our ability to predict community richness and biomass under ambient and anthropogenically altered conditions. |
publishDate |
2025 |
dc.date.none.fl_str_mv |
2025-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/267987 Zhang, Pengfei; Seabloom, Eric; Foo, Jasmine; MacDougall, Andrew S.; Harpole, W. Stanley; et al.; Dominant species predict plant richness and biomass in global grasslands; Nature; Nature Ecology & Evolution; 9; 6; 6-2025; 924-936 2397-334X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/267987 |
identifier_str_mv |
Zhang, Pengfei; Seabloom, Eric; Foo, Jasmine; MacDougall, Andrew S.; Harpole, W. Stanley; et al.; Dominant species predict plant richness and biomass in global grasslands; Nature; Nature Ecology & Evolution; 9; 6; 6-2025; 924-936 2397-334X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41559-025-02701-y info:eu-repo/semantics/altIdentifier/doi/10.1038/s41559-025-02701-y |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Nature |
publisher.none.fl_str_mv |
Nature |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842270163135627264 |
score |
13.13397 |