Chemical potential and free energy of nanoconfined water in Newton black films
- Autores
- Di Napoli, Solange Mariel
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this work we investigate possible approximations to the free energy and chemical potential of water within a Newton black film as a natural nanoconfinement. As a first step we explore the different approximations in a sample of 500 water molecules (bulk water), finding that the overlapping distribution method is the more accurate. For the Newton black film we also calculate the free energy profile of the water molecules along the bilayer normal. We obtain that depending on the position of the water molecule inside the bilayer, the excess chemical potential is lower than that of bulk water, suggesting that a water molecule might be more stable inside the Newton black film than in bulk. A charged semiflexible amphiphilic model and the TIP5P model of water are used in our simulations.
Fil: Di Napoli, Solange Mariel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica; Argentina - Materia
-
CHEMICAL POTENTIAL
FREE ENERGY
MOLECULAR DYNAMICS
NEWTON BLACK FILMS
TIP5P WATER - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/92437
Ver los metadatos del registro completo
id |
CONICETDig_191831a2529ae1725fe4c7b51dcef991 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/92437 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Chemical potential and free energy of nanoconfined water in Newton black filmsDi Napoli, Solange MarielCHEMICAL POTENTIALFREE ENERGYMOLECULAR DYNAMICSNEWTON BLACK FILMSTIP5P WATERhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1In this work we investigate possible approximations to the free energy and chemical potential of water within a Newton black film as a natural nanoconfinement. As a first step we explore the different approximations in a sample of 500 water molecules (bulk water), finding that the overlapping distribution method is the more accurate. For the Newton black film we also calculate the free energy profile of the water molecules along the bilayer normal. We obtain that depending on the position of the water molecule inside the bilayer, the excess chemical potential is lower than that of bulk water, suggesting that a water molecule might be more stable inside the Newton black film than in bulk. A charged semiflexible amphiphilic model and the TIP5P model of water are used in our simulations.Fil: Di Napoli, Solange Mariel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica; ArgentinaElsevier Science2018-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/92437Di Napoli, Solange Mariel; Chemical potential and free energy of nanoconfined water in Newton black films; Elsevier Science; Chemical Physics; 513; 9-2018; 246-2510301-0104CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S030101041830613Xinfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.chemphys.2018.07.033info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:38:13Zoai:ri.conicet.gov.ar:11336/92437instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:38:14.228CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Chemical potential and free energy of nanoconfined water in Newton black films |
title |
Chemical potential and free energy of nanoconfined water in Newton black films |
spellingShingle |
Chemical potential and free energy of nanoconfined water in Newton black films Di Napoli, Solange Mariel CHEMICAL POTENTIAL FREE ENERGY MOLECULAR DYNAMICS NEWTON BLACK FILMS TIP5P WATER |
title_short |
Chemical potential and free energy of nanoconfined water in Newton black films |
title_full |
Chemical potential and free energy of nanoconfined water in Newton black films |
title_fullStr |
Chemical potential and free energy of nanoconfined water in Newton black films |
title_full_unstemmed |
Chemical potential and free energy of nanoconfined water in Newton black films |
title_sort |
Chemical potential and free energy of nanoconfined water in Newton black films |
dc.creator.none.fl_str_mv |
Di Napoli, Solange Mariel |
author |
Di Napoli, Solange Mariel |
author_facet |
Di Napoli, Solange Mariel |
author_role |
author |
dc.subject.none.fl_str_mv |
CHEMICAL POTENTIAL FREE ENERGY MOLECULAR DYNAMICS NEWTON BLACK FILMS TIP5P WATER |
topic |
CHEMICAL POTENTIAL FREE ENERGY MOLECULAR DYNAMICS NEWTON BLACK FILMS TIP5P WATER |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this work we investigate possible approximations to the free energy and chemical potential of water within a Newton black film as a natural nanoconfinement. As a first step we explore the different approximations in a sample of 500 water molecules (bulk water), finding that the overlapping distribution method is the more accurate. For the Newton black film we also calculate the free energy profile of the water molecules along the bilayer normal. We obtain that depending on the position of the water molecule inside the bilayer, the excess chemical potential is lower than that of bulk water, suggesting that a water molecule might be more stable inside the Newton black film than in bulk. A charged semiflexible amphiphilic model and the TIP5P model of water are used in our simulations. Fil: Di Napoli, Solange Mariel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica; Argentina |
description |
In this work we investigate possible approximations to the free energy and chemical potential of water within a Newton black film as a natural nanoconfinement. As a first step we explore the different approximations in a sample of 500 water molecules (bulk water), finding that the overlapping distribution method is the more accurate. For the Newton black film we also calculate the free energy profile of the water molecules along the bilayer normal. We obtain that depending on the position of the water molecule inside the bilayer, the excess chemical potential is lower than that of bulk water, suggesting that a water molecule might be more stable inside the Newton black film than in bulk. A charged semiflexible amphiphilic model and the TIP5P model of water are used in our simulations. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/92437 Di Napoli, Solange Mariel; Chemical potential and free energy of nanoconfined water in Newton black films; Elsevier Science; Chemical Physics; 513; 9-2018; 246-251 0301-0104 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/92437 |
identifier_str_mv |
Di Napoli, Solange Mariel; Chemical potential and free energy of nanoconfined water in Newton black films; Elsevier Science; Chemical Physics; 513; 9-2018; 246-251 0301-0104 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S030101041830613X info:eu-repo/semantics/altIdentifier/doi/10.1016/j.chemphys.2018.07.033 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613208131764224 |
score |
13.070432 |