Newton–Hensel Interpolation Lifting
- Autores
- Avendaño, Martin; Krick, Teresa Elena Genoveva; Pacetti, Ariel Martín
- Año de publicación
- 2006
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The main result of this paper is a new version of Newton-Hensel lifting that relates to interpolation questions. It allows one to lift polynomials in ℤ[x] from information modulo a prime number p ≠ 2 to a power pk for any k, and its originality is that it is a mixed version that not only lifts the coefficients of the polynomial but also its exponents. We show that this result corresponds exactly to a Newton--Hensel lifting of a system of 2t generalized equations in 2t unknowns in the ring of p-adic integers ℤp. Finally, we apply our results to sparse polynomial interpolation in ℤ[x].
Fil: Avendaño, Martin. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Fil: Krick, Teresa Elena Genoveva. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Fil: Pacetti, Ariel Martín. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina - Materia
-
Newton-Hensel lifting
p-Adic integers
Sparse polynomial interpolation - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/251073
Ver los metadatos del registro completo
id |
CONICETDig_0a46a7f4eafc30dc4e76bd350c6c779a |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/251073 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Newton–Hensel Interpolation LiftingAvendaño, MartinKrick, Teresa Elena GenovevaPacetti, Ariel MartínNewton-Hensel liftingp-Adic integersSparse polynomial interpolationhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The main result of this paper is a new version of Newton-Hensel lifting that relates to interpolation questions. It allows one to lift polynomials in ℤ[x] from information modulo a prime number p ≠ 2 to a power pk for any k, and its originality is that it is a mixed version that not only lifts the coefficients of the polynomial but also its exponents. We show that this result corresponds exactly to a Newton--Hensel lifting of a system of 2t generalized equations in 2t unknowns in the ring of p-adic integers ℤp. Finally, we apply our results to sparse polynomial interpolation in ℤ[x].Fil: Avendaño, Martin. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaFil: Krick, Teresa Elena Genoveva. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaFil: Pacetti, Ariel Martín. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; ArgentinaSpringer2006-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/251073Avendaño, Martin; Krick, Teresa Elena Genoveva; Pacetti, Ariel Martín; Newton–Hensel Interpolation Lifting; Springer; Foundations Of Computational Mathematics; 6; 1; 1-2006; 82-1201615-3375CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s10208-005-0172-3info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s10208-005-0172-3info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:56:30Zoai:ri.conicet.gov.ar:11336/251073instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:56:31.001CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Newton–Hensel Interpolation Lifting |
title |
Newton–Hensel Interpolation Lifting |
spellingShingle |
Newton–Hensel Interpolation Lifting Avendaño, Martin Newton-Hensel lifting p-Adic integers Sparse polynomial interpolation |
title_short |
Newton–Hensel Interpolation Lifting |
title_full |
Newton–Hensel Interpolation Lifting |
title_fullStr |
Newton–Hensel Interpolation Lifting |
title_full_unstemmed |
Newton–Hensel Interpolation Lifting |
title_sort |
Newton–Hensel Interpolation Lifting |
dc.creator.none.fl_str_mv |
Avendaño, Martin Krick, Teresa Elena Genoveva Pacetti, Ariel Martín |
author |
Avendaño, Martin |
author_facet |
Avendaño, Martin Krick, Teresa Elena Genoveva Pacetti, Ariel Martín |
author_role |
author |
author2 |
Krick, Teresa Elena Genoveva Pacetti, Ariel Martín |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Newton-Hensel lifting p-Adic integers Sparse polynomial interpolation |
topic |
Newton-Hensel lifting p-Adic integers Sparse polynomial interpolation |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The main result of this paper is a new version of Newton-Hensel lifting that relates to interpolation questions. It allows one to lift polynomials in ℤ[x] from information modulo a prime number p ≠ 2 to a power pk for any k, and its originality is that it is a mixed version that not only lifts the coefficients of the polynomial but also its exponents. We show that this result corresponds exactly to a Newton--Hensel lifting of a system of 2t generalized equations in 2t unknowns in the ring of p-adic integers ℤp. Finally, we apply our results to sparse polynomial interpolation in ℤ[x]. Fil: Avendaño, Martin. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina Fil: Krick, Teresa Elena Genoveva. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina Fil: Pacetti, Ariel Martín. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina |
description |
The main result of this paper is a new version of Newton-Hensel lifting that relates to interpolation questions. It allows one to lift polynomials in ℤ[x] from information modulo a prime number p ≠ 2 to a power pk for any k, and its originality is that it is a mixed version that not only lifts the coefficients of the polynomial but also its exponents. We show that this result corresponds exactly to a Newton--Hensel lifting of a system of 2t generalized equations in 2t unknowns in the ring of p-adic integers ℤp. Finally, we apply our results to sparse polynomial interpolation in ℤ[x]. |
publishDate |
2006 |
dc.date.none.fl_str_mv |
2006-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/251073 Avendaño, Martin; Krick, Teresa Elena Genoveva; Pacetti, Ariel Martín; Newton–Hensel Interpolation Lifting; Springer; Foundations Of Computational Mathematics; 6; 1; 1-2006; 82-120 1615-3375 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/251073 |
identifier_str_mv |
Avendaño, Martin; Krick, Teresa Elena Genoveva; Pacetti, Ariel Martín; Newton–Hensel Interpolation Lifting; Springer; Foundations Of Computational Mathematics; 6; 1; 1-2006; 82-120 1615-3375 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s10208-005-0172-3 info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s10208-005-0172-3 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269406687657984 |
score |
13.13397 |