Stability under scaling in the local phases of multiplicative functions
- Autores
- Walsh, Miguel Nicolás
- Año de publicación
- 2025
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We introduce a strategy to tackle some known obstructions of current approaches to the Fourier uniformity conjecture. Assuming GRH, we then show the conjecture holds for intervals of length at least (log X)^{psi(X)}, with psi(X) -> infty an arbitrarily slowly growing function of X. We expect the methods should adapt to nilsequences, thus also showing that the Generalised Riemann Hypothesis implies close to exponential growth in the sign patterns of the Liouville function.
Fil: Walsh, Miguel Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina - Materia
-
ABSTRACT HARMONIC ANALYSIS
FOURIER ANALYSIS
MATHEMATICS
NUMBER THEORY
REAL FUNCTIONS
FUNCTIONAL ANALYSIS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/271062
Ver los metadatos del registro completo
| id |
CONICETDig_18da05dd50084566af156d7a1148ee88 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/271062 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Stability under scaling in the local phases of multiplicative functionsWalsh, Miguel NicolásABSTRACT HARMONIC ANALYSISFOURIER ANALYSISMATHEMATICSNUMBER THEORYREAL FUNCTIONSFUNCTIONAL ANALYSIShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We introduce a strategy to tackle some known obstructions of current approaches to the Fourier uniformity conjecture. Assuming GRH, we then show the conjecture holds for intervals of length at least (log X)^{psi(X)}, with psi(X) -> infty an arbitrarily slowly growing function of X. We expect the methods should adapt to nilsequences, thus also showing that the Generalised Riemann Hypothesis implies close to exponential growth in the sign patterns of the Liouville function.Fil: Walsh, Miguel Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaSpringer2025-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/271062Walsh, Miguel Nicolás; Stability under scaling in the local phases of multiplicative functions; Springer; Inventiones Mathematicae; 241; 1; 6-2025; 325-3620020-9910CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00222-025-01343-yinfo:eu-repo/semantics/altIdentifier/doi/10.1007/s00222-025-01343-yinfo:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2310.07873info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-05T10:16:23Zoai:ri.conicet.gov.ar:11336/271062instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-05 10:16:23.727CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Stability under scaling in the local phases of multiplicative functions |
| title |
Stability under scaling in the local phases of multiplicative functions |
| spellingShingle |
Stability under scaling in the local phases of multiplicative functions Walsh, Miguel Nicolás ABSTRACT HARMONIC ANALYSIS FOURIER ANALYSIS MATHEMATICS NUMBER THEORY REAL FUNCTIONS FUNCTIONAL ANALYSIS |
| title_short |
Stability under scaling in the local phases of multiplicative functions |
| title_full |
Stability under scaling in the local phases of multiplicative functions |
| title_fullStr |
Stability under scaling in the local phases of multiplicative functions |
| title_full_unstemmed |
Stability under scaling in the local phases of multiplicative functions |
| title_sort |
Stability under scaling in the local phases of multiplicative functions |
| dc.creator.none.fl_str_mv |
Walsh, Miguel Nicolás |
| author |
Walsh, Miguel Nicolás |
| author_facet |
Walsh, Miguel Nicolás |
| author_role |
author |
| dc.subject.none.fl_str_mv |
ABSTRACT HARMONIC ANALYSIS FOURIER ANALYSIS MATHEMATICS NUMBER THEORY REAL FUNCTIONS FUNCTIONAL ANALYSIS |
| topic |
ABSTRACT HARMONIC ANALYSIS FOURIER ANALYSIS MATHEMATICS NUMBER THEORY REAL FUNCTIONS FUNCTIONAL ANALYSIS |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
We introduce a strategy to tackle some known obstructions of current approaches to the Fourier uniformity conjecture. Assuming GRH, we then show the conjecture holds for intervals of length at least (log X)^{psi(X)}, with psi(X) -> infty an arbitrarily slowly growing function of X. We expect the methods should adapt to nilsequences, thus also showing that the Generalised Riemann Hypothesis implies close to exponential growth in the sign patterns of the Liouville function. Fil: Walsh, Miguel Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina |
| description |
We introduce a strategy to tackle some known obstructions of current approaches to the Fourier uniformity conjecture. Assuming GRH, we then show the conjecture holds for intervals of length at least (log X)^{psi(X)}, with psi(X) -> infty an arbitrarily slowly growing function of X. We expect the methods should adapt to nilsequences, thus also showing that the Generalised Riemann Hypothesis implies close to exponential growth in the sign patterns of the Liouville function. |
| publishDate |
2025 |
| dc.date.none.fl_str_mv |
2025-06 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/271062 Walsh, Miguel Nicolás; Stability under scaling in the local phases of multiplicative functions; Springer; Inventiones Mathematicae; 241; 1; 6-2025; 325-362 0020-9910 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/271062 |
| identifier_str_mv |
Walsh, Miguel Nicolás; Stability under scaling in the local phases of multiplicative functions; Springer; Inventiones Mathematicae; 241; 1; 6-2025; 325-362 0020-9910 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00222-025-01343-y info:eu-repo/semantics/altIdentifier/doi/10.1007/s00222-025-01343-y info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2310.07873 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Springer |
| publisher.none.fl_str_mv |
Springer |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1847977731311009792 |
| score |
13.084122 |