A constitutive equation and generalized Gassmann modulus for multimineral porous media
- Autores
- Carcione, Jose M.; Helle, Hans B.; Santos, Juan Enrique; Ravazzoli, Claudia Leonor
- Año de publicación
- 2005
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We derive the time-domain stress-strain relation for a porous medium composed of n - 1 solid frames and a saturating fluid. The relation holds for nonuniform porosity and can be used for numerical simulation of wave propagation. The strain-energy density can be expressed in such a way that the two phases (solid and fluid) can be mathematically equivalent. From this simplified expression of strain energy, we analogize two-, three-, and n-phase porous media and obtain the corresponding coefficients (stiffnesses). Moreover, we obtain an approx imation for the generalized Gassmann modulus. The Gassmann modulus is the bulk modulus of a saturated porous medium whose matrix (frame) is homogeneous. That is, the medium consists of two homogeneous constituents: a mineral composing the frame and a fluid. Gassmann's modulus is obtained at the low-frequency limit of Biot's theory of poroelasticity. Here, we assume that all constituents move in phase, a condition similar to the dynamic compatibility condition used by Biot, by which the P-wave velocity is equal to Gassmann's velocity at all frequencies. Our results are compared with those of the Berryman-Milton (BM) model, which provides an exact generalization of Gassmann's modulus to the three-phase case. The model is then compared to the wet-rock moduli obtained by static finite-element simulations on digitized images of microstructure and is used to fit experimental data for shaly sandstones. Finally, an example of a multimineral rock (n > 3) saturated with different fluids is given.
Fil: Carcione, Jose M.. Istituto Nazionale di Oceanografia e di Geofisica Sperimentale; Italia
Fil: Helle, Hans B.. Norsk Hydro; Noruega
Fil: Santos, Juan Enrique. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto del Gas y del Petróleo; Argentina
Fil: Ravazzoli, Claudia Leonor. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina - Materia
-
Gassmann
Porous media - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/148916
Ver los metadatos del registro completo
| id |
CONICETDig_18d697a4f6b49ea320a53681ce959b86 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/148916 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
A constitutive equation and generalized Gassmann modulus for multimineral porous mediaCarcione, Jose M.Helle, Hans B.Santos, Juan EnriqueRavazzoli, Claudia LeonorGassmannPorous mediahttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1We derive the time-domain stress-strain relation for a porous medium composed of n - 1 solid frames and a saturating fluid. The relation holds for nonuniform porosity and can be used for numerical simulation of wave propagation. The strain-energy density can be expressed in such a way that the two phases (solid and fluid) can be mathematically equivalent. From this simplified expression of strain energy, we analogize two-, three-, and n-phase porous media and obtain the corresponding coefficients (stiffnesses). Moreover, we obtain an approx imation for the generalized Gassmann modulus. The Gassmann modulus is the bulk modulus of a saturated porous medium whose matrix (frame) is homogeneous. That is, the medium consists of two homogeneous constituents: a mineral composing the frame and a fluid. Gassmann's modulus is obtained at the low-frequency limit of Biot's theory of poroelasticity. Here, we assume that all constituents move in phase, a condition similar to the dynamic compatibility condition used by Biot, by which the P-wave velocity is equal to Gassmann's velocity at all frequencies. Our results are compared with those of the Berryman-Milton (BM) model, which provides an exact generalization of Gassmann's modulus to the three-phase case. The model is then compared to the wet-rock moduli obtained by static finite-element simulations on digitized images of microstructure and is used to fit experimental data for shaly sandstones. Finally, an example of a multimineral rock (n > 3) saturated with different fluids is given.Fil: Carcione, Jose M.. Istituto Nazionale di Oceanografia e di Geofisica Sperimentale; ItaliaFil: Helle, Hans B.. Norsk Hydro; NoruegaFil: Santos, Juan Enrique. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto del Gas y del Petróleo; ArgentinaFil: Ravazzoli, Claudia Leonor. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; ArgentinaSociety of Exploration Geophysicists2005-03-22info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/148916Carcione, Jose M.; Helle, Hans B.; Santos, Juan Enrique; Ravazzoli, Claudia Leonor; A constitutive equation and generalized Gassmann modulus for multimineral porous media; Society of Exploration Geophysicists; Geophysics; 70; 2; 22-3-2005; 17-260016-80331942-2156CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://library.seg.org/doi/10.1190/1.1897035info:eu-repo/semantics/altIdentifier/doi/10.1190/1.1897035info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2026-01-14T12:23:09Zoai:ri.conicet.gov.ar:11336/148916instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982026-01-14 12:23:09.291CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
A constitutive equation and generalized Gassmann modulus for multimineral porous media |
| title |
A constitutive equation and generalized Gassmann modulus for multimineral porous media |
| spellingShingle |
A constitutive equation and generalized Gassmann modulus for multimineral porous media Carcione, Jose M. Gassmann Porous media |
| title_short |
A constitutive equation and generalized Gassmann modulus for multimineral porous media |
| title_full |
A constitutive equation and generalized Gassmann modulus for multimineral porous media |
| title_fullStr |
A constitutive equation and generalized Gassmann modulus for multimineral porous media |
| title_full_unstemmed |
A constitutive equation and generalized Gassmann modulus for multimineral porous media |
| title_sort |
A constitutive equation and generalized Gassmann modulus for multimineral porous media |
| dc.creator.none.fl_str_mv |
Carcione, Jose M. Helle, Hans B. Santos, Juan Enrique Ravazzoli, Claudia Leonor |
| author |
Carcione, Jose M. |
| author_facet |
Carcione, Jose M. Helle, Hans B. Santos, Juan Enrique Ravazzoli, Claudia Leonor |
| author_role |
author |
| author2 |
Helle, Hans B. Santos, Juan Enrique Ravazzoli, Claudia Leonor |
| author2_role |
author author author |
| dc.subject.none.fl_str_mv |
Gassmann Porous media |
| topic |
Gassmann Porous media |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
We derive the time-domain stress-strain relation for a porous medium composed of n - 1 solid frames and a saturating fluid. The relation holds for nonuniform porosity and can be used for numerical simulation of wave propagation. The strain-energy density can be expressed in such a way that the two phases (solid and fluid) can be mathematically equivalent. From this simplified expression of strain energy, we analogize two-, three-, and n-phase porous media and obtain the corresponding coefficients (stiffnesses). Moreover, we obtain an approx imation for the generalized Gassmann modulus. The Gassmann modulus is the bulk modulus of a saturated porous medium whose matrix (frame) is homogeneous. That is, the medium consists of two homogeneous constituents: a mineral composing the frame and a fluid. Gassmann's modulus is obtained at the low-frequency limit of Biot's theory of poroelasticity. Here, we assume that all constituents move in phase, a condition similar to the dynamic compatibility condition used by Biot, by which the P-wave velocity is equal to Gassmann's velocity at all frequencies. Our results are compared with those of the Berryman-Milton (BM) model, which provides an exact generalization of Gassmann's modulus to the three-phase case. The model is then compared to the wet-rock moduli obtained by static finite-element simulations on digitized images of microstructure and is used to fit experimental data for shaly sandstones. Finally, an example of a multimineral rock (n > 3) saturated with different fluids is given. Fil: Carcione, Jose M.. Istituto Nazionale di Oceanografia e di Geofisica Sperimentale; Italia Fil: Helle, Hans B.. Norsk Hydro; Noruega Fil: Santos, Juan Enrique. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto del Gas y del Petróleo; Argentina Fil: Ravazzoli, Claudia Leonor. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina |
| description |
We derive the time-domain stress-strain relation for a porous medium composed of n - 1 solid frames and a saturating fluid. The relation holds for nonuniform porosity and can be used for numerical simulation of wave propagation. The strain-energy density can be expressed in such a way that the two phases (solid and fluid) can be mathematically equivalent. From this simplified expression of strain energy, we analogize two-, three-, and n-phase porous media and obtain the corresponding coefficients (stiffnesses). Moreover, we obtain an approx imation for the generalized Gassmann modulus. The Gassmann modulus is the bulk modulus of a saturated porous medium whose matrix (frame) is homogeneous. That is, the medium consists of two homogeneous constituents: a mineral composing the frame and a fluid. Gassmann's modulus is obtained at the low-frequency limit of Biot's theory of poroelasticity. Here, we assume that all constituents move in phase, a condition similar to the dynamic compatibility condition used by Biot, by which the P-wave velocity is equal to Gassmann's velocity at all frequencies. Our results are compared with those of the Berryman-Milton (BM) model, which provides an exact generalization of Gassmann's modulus to the three-phase case. The model is then compared to the wet-rock moduli obtained by static finite-element simulations on digitized images of microstructure and is used to fit experimental data for shaly sandstones. Finally, an example of a multimineral rock (n > 3) saturated with different fluids is given. |
| publishDate |
2005 |
| dc.date.none.fl_str_mv |
2005-03-22 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/148916 Carcione, Jose M.; Helle, Hans B.; Santos, Juan Enrique; Ravazzoli, Claudia Leonor; A constitutive equation and generalized Gassmann modulus for multimineral porous media; Society of Exploration Geophysicists; Geophysics; 70; 2; 22-3-2005; 17-26 0016-8033 1942-2156 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/148916 |
| identifier_str_mv |
Carcione, Jose M.; Helle, Hans B.; Santos, Juan Enrique; Ravazzoli, Claudia Leonor; A constitutive equation and generalized Gassmann modulus for multimineral porous media; Society of Exploration Geophysicists; Geophysics; 70; 2; 22-3-2005; 17-26 0016-8033 1942-2156 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://library.seg.org/doi/10.1190/1.1897035 info:eu-repo/semantics/altIdentifier/doi/10.1190/1.1897035 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Society of Exploration Geophysicists |
| publisher.none.fl_str_mv |
Society of Exploration Geophysicists |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1854321722046545920 |
| score |
12.603104 |