Igneous origin of Co 2 in ancient and recent hot-spring waters and travertines from the northern argentinean andes

Autores
Gibert, Roger O.; Taberner, Conxita; Sáez, Alberto; Giralt, Santiago; Alonso, Ricardo Narciso; Edwards, Lawrence R.; Pueyo, Juan J.
Año de publicación
2009
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Thermal travertines are an archive of CO 2 sources and sinks in hydrothermal systems. Two major regional factors control travertine precipitation: water availability and CO 2 supply. Thus, travertines form a valuable archive of hydrodynamic variability and sources of main contributions to dissolved inorganic carbon (DIC). It is relevant to determine the main DIC sources of thermal waters (i.e., organic-matter degradation, recycled from older carbonates, emission of deep-seated magmatic CO 2), as they are key inputs to calculate the Iithosphere-atmosphere CO 2 budget. The Antuco travertine from the Central Andes represents one of such archives, with a 500 ky record of accretionary periods (dated as 425-320, 260, and 155 ky BP) related to high hydrothermal activity of hot springs. It consists of two travertine units: (1) a lower massive unit displaying large calcite pseudomorphs after aragonite that precipitated in proximal ponds with abundant water, and (2) an upper stratified unit showing more distal facies bearing siliciclastics and manganese and iron oxides. The replacement of aragonite by calcite in the lower unit was related to the decrease of water salinity in the thermal system through time. In the Antuco travertine, DIC δ 13C values of travertine parental waters of around -9‰ suggest that CO 2 was related to igneous processes and volcanic activity, and released along deep-seated faults. Relative water/rock ratios derived from δ 18O values and fluid-inclusion microthermometric data from travertine carbonates are consistent with an interpretation of greater water availability in the hydrothermal system during the late Pleistocene than at present. The different petrographic features and isotopic signatures are interpreted to reflect increased water availability during more humid periods in the Altiplano, which triggered precipitation of travertine bodies. Travertine growth took place during interglacial-humid climate periods between Marine Isotope Stages (MIS) 3 and 9, which correspond to highstand events in large lakes of the Andean Altiplano. Results of this study illustrate that volcanic activity, furnishing rather constant CO 2 and heat fluxes, were the key controls of thermalism in the Altiplane region during the Quaternary, whilst climatic changes (humid vs. arid periods in the late Pleistocene) controlled mineralogy, facies, and architecture of the travertines. The combined use of δ 13C and 87Sr/ 86Sr signatures in carbonate precipitates has been proven to be of major relevance to evaluate the CO 2 sources along fault zones in this study.
Fil: Gibert, Roger O.. Universidad de Barcelona; España
Fil: Taberner, Conxita. Consejo Superior de Investigaciones Científicas. Instituto de Ciencias de la Tierra Jaume Almera; España
Fil: Sáez, Alberto. Universidad de Barcelona; España
Fil: Giralt, Santiago. Consejo Superior de Investigaciones Científicas. Instituto de Ciencias de la Tierra Jaume Almera; España
Fil: Alonso, Ricardo Narciso. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto Superior de Correlación Geológica. Universidad Nacional de Tucumán. Facultad de Ciencias Naturales e Instituto Miguel Lillo. Departamento de Geología. Cátedra Geología Estructural. Instituto Superior de Correlación Geológica; Argentina
Fil: Edwards, Lawrence R.. University of Minnesota; Estados Unidos
Fil: Pueyo, Juan J.. Universidad de Barcelona; España
Materia
Igneous Origin of Co2
Ancient And Recent
Hot Spring Waters And Travertines
Northern Argentinean Andes
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/72900

id CONICETDig_175fca7ad5a0bb89e1497b46c5c76956
oai_identifier_str oai:ri.conicet.gov.ar:11336/72900
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Igneous origin of Co 2 in ancient and recent hot-spring waters and travertines from the northern argentinean andesGibert, Roger O.Taberner, ConxitaSáez, AlbertoGiralt, SantiagoAlonso, Ricardo NarcisoEdwards, Lawrence R.Pueyo, Juan J.Igneous Origin of Co2Ancient And RecentHot Spring Waters And TravertinesNorthern Argentinean Andeshttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1Thermal travertines are an archive of CO 2 sources and sinks in hydrothermal systems. Two major regional factors control travertine precipitation: water availability and CO 2 supply. Thus, travertines form a valuable archive of hydrodynamic variability and sources of main contributions to dissolved inorganic carbon (DIC). It is relevant to determine the main DIC sources of thermal waters (i.e., organic-matter degradation, recycled from older carbonates, emission of deep-seated magmatic CO 2), as they are key inputs to calculate the Iithosphere-atmosphere CO 2 budget. The Antuco travertine from the Central Andes represents one of such archives, with a 500 ky record of accretionary periods (dated as 425-320, 260, and 155 ky BP) related to high hydrothermal activity of hot springs. It consists of two travertine units: (1) a lower massive unit displaying large calcite pseudomorphs after aragonite that precipitated in proximal ponds with abundant water, and (2) an upper stratified unit showing more distal facies bearing siliciclastics and manganese and iron oxides. The replacement of aragonite by calcite in the lower unit was related to the decrease of water salinity in the thermal system through time. In the Antuco travertine, DIC δ 13C values of travertine parental waters of around -9‰ suggest that CO 2 was related to igneous processes and volcanic activity, and released along deep-seated faults. Relative water/rock ratios derived from δ 18O values and fluid-inclusion microthermometric data from travertine carbonates are consistent with an interpretation of greater water availability in the hydrothermal system during the late Pleistocene than at present. The different petrographic features and isotopic signatures are interpreted to reflect increased water availability during more humid periods in the Altiplano, which triggered precipitation of travertine bodies. Travertine growth took place during interglacial-humid climate periods between Marine Isotope Stages (MIS) 3 and 9, which correspond to highstand events in large lakes of the Andean Altiplano. Results of this study illustrate that volcanic activity, furnishing rather constant CO 2 and heat fluxes, were the key controls of thermalism in the Altiplane region during the Quaternary, whilst climatic changes (humid vs. arid periods in the late Pleistocene) controlled mineralogy, facies, and architecture of the travertines. The combined use of δ 13C and 87Sr/ 86Sr signatures in carbonate precipitates has been proven to be of major relevance to evaluate the CO 2 sources along fault zones in this study.Fil: Gibert, Roger O.. Universidad de Barcelona; EspañaFil: Taberner, Conxita. Consejo Superior de Investigaciones Científicas. Instituto de Ciencias de la Tierra Jaume Almera; EspañaFil: Sáez, Alberto. Universidad de Barcelona; EspañaFil: Giralt, Santiago. Consejo Superior de Investigaciones Científicas. Instituto de Ciencias de la Tierra Jaume Almera; EspañaFil: Alonso, Ricardo Narciso. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto Superior de Correlación Geológica. Universidad Nacional de Tucumán. Facultad de Ciencias Naturales e Instituto Miguel Lillo. Departamento de Geología. Cátedra Geología Estructural. Instituto Superior de Correlación Geológica; ArgentinaFil: Edwards, Lawrence R.. University of Minnesota; Estados UnidosFil: Pueyo, Juan J.. Universidad de Barcelona; EspañaSociety for Sedimentary Geology2009-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/72900Gibert, Roger O.; Taberner, Conxita; Sáez, Alberto; Giralt, Santiago; Alonso, Ricardo Narciso; et al.; Igneous origin of Co 2 in ancient and recent hot-spring waters and travertines from the northern argentinean andes; Society for Sedimentary Geology; Journal of Sedimentary Research - (Print); 79; 8; 7-2009; 554-5671527-14041938-3681CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://pubs.geoscienceworld.org/sepm/jsedres/article/79/8/554-567/145270info:eu-repo/semantics/altIdentifier/doi/10.2110/jsr.2009.061info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:59:53Zoai:ri.conicet.gov.ar:11336/72900instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:59:53.661CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Igneous origin of Co 2 in ancient and recent hot-spring waters and travertines from the northern argentinean andes
title Igneous origin of Co 2 in ancient and recent hot-spring waters and travertines from the northern argentinean andes
spellingShingle Igneous origin of Co 2 in ancient and recent hot-spring waters and travertines from the northern argentinean andes
Gibert, Roger O.
Igneous Origin of Co2
Ancient And Recent
Hot Spring Waters And Travertines
Northern Argentinean Andes
title_short Igneous origin of Co 2 in ancient and recent hot-spring waters and travertines from the northern argentinean andes
title_full Igneous origin of Co 2 in ancient and recent hot-spring waters and travertines from the northern argentinean andes
title_fullStr Igneous origin of Co 2 in ancient and recent hot-spring waters and travertines from the northern argentinean andes
title_full_unstemmed Igneous origin of Co 2 in ancient and recent hot-spring waters and travertines from the northern argentinean andes
title_sort Igneous origin of Co 2 in ancient and recent hot-spring waters and travertines from the northern argentinean andes
dc.creator.none.fl_str_mv Gibert, Roger O.
Taberner, Conxita
Sáez, Alberto
Giralt, Santiago
Alonso, Ricardo Narciso
Edwards, Lawrence R.
Pueyo, Juan J.
author Gibert, Roger O.
author_facet Gibert, Roger O.
Taberner, Conxita
Sáez, Alberto
Giralt, Santiago
Alonso, Ricardo Narciso
Edwards, Lawrence R.
Pueyo, Juan J.
author_role author
author2 Taberner, Conxita
Sáez, Alberto
Giralt, Santiago
Alonso, Ricardo Narciso
Edwards, Lawrence R.
Pueyo, Juan J.
author2_role author
author
author
author
author
author
dc.subject.none.fl_str_mv Igneous Origin of Co2
Ancient And Recent
Hot Spring Waters And Travertines
Northern Argentinean Andes
topic Igneous Origin of Co2
Ancient And Recent
Hot Spring Waters And Travertines
Northern Argentinean Andes
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.5
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Thermal travertines are an archive of CO 2 sources and sinks in hydrothermal systems. Two major regional factors control travertine precipitation: water availability and CO 2 supply. Thus, travertines form a valuable archive of hydrodynamic variability and sources of main contributions to dissolved inorganic carbon (DIC). It is relevant to determine the main DIC sources of thermal waters (i.e., organic-matter degradation, recycled from older carbonates, emission of deep-seated magmatic CO 2), as they are key inputs to calculate the Iithosphere-atmosphere CO 2 budget. The Antuco travertine from the Central Andes represents one of such archives, with a 500 ky record of accretionary periods (dated as 425-320, 260, and 155 ky BP) related to high hydrothermal activity of hot springs. It consists of two travertine units: (1) a lower massive unit displaying large calcite pseudomorphs after aragonite that precipitated in proximal ponds with abundant water, and (2) an upper stratified unit showing more distal facies bearing siliciclastics and manganese and iron oxides. The replacement of aragonite by calcite in the lower unit was related to the decrease of water salinity in the thermal system through time. In the Antuco travertine, DIC δ 13C values of travertine parental waters of around -9‰ suggest that CO 2 was related to igneous processes and volcanic activity, and released along deep-seated faults. Relative water/rock ratios derived from δ 18O values and fluid-inclusion microthermometric data from travertine carbonates are consistent with an interpretation of greater water availability in the hydrothermal system during the late Pleistocene than at present. The different petrographic features and isotopic signatures are interpreted to reflect increased water availability during more humid periods in the Altiplano, which triggered precipitation of travertine bodies. Travertine growth took place during interglacial-humid climate periods between Marine Isotope Stages (MIS) 3 and 9, which correspond to highstand events in large lakes of the Andean Altiplano. Results of this study illustrate that volcanic activity, furnishing rather constant CO 2 and heat fluxes, were the key controls of thermalism in the Altiplane region during the Quaternary, whilst climatic changes (humid vs. arid periods in the late Pleistocene) controlled mineralogy, facies, and architecture of the travertines. The combined use of δ 13C and 87Sr/ 86Sr signatures in carbonate precipitates has been proven to be of major relevance to evaluate the CO 2 sources along fault zones in this study.
Fil: Gibert, Roger O.. Universidad de Barcelona; España
Fil: Taberner, Conxita. Consejo Superior de Investigaciones Científicas. Instituto de Ciencias de la Tierra Jaume Almera; España
Fil: Sáez, Alberto. Universidad de Barcelona; España
Fil: Giralt, Santiago. Consejo Superior de Investigaciones Científicas. Instituto de Ciencias de la Tierra Jaume Almera; España
Fil: Alonso, Ricardo Narciso. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto Superior de Correlación Geológica. Universidad Nacional de Tucumán. Facultad de Ciencias Naturales e Instituto Miguel Lillo. Departamento de Geología. Cátedra Geología Estructural. Instituto Superior de Correlación Geológica; Argentina
Fil: Edwards, Lawrence R.. University of Minnesota; Estados Unidos
Fil: Pueyo, Juan J.. Universidad de Barcelona; España
description Thermal travertines are an archive of CO 2 sources and sinks in hydrothermal systems. Two major regional factors control travertine precipitation: water availability and CO 2 supply. Thus, travertines form a valuable archive of hydrodynamic variability and sources of main contributions to dissolved inorganic carbon (DIC). It is relevant to determine the main DIC sources of thermal waters (i.e., organic-matter degradation, recycled from older carbonates, emission of deep-seated magmatic CO 2), as they are key inputs to calculate the Iithosphere-atmosphere CO 2 budget. The Antuco travertine from the Central Andes represents one of such archives, with a 500 ky record of accretionary periods (dated as 425-320, 260, and 155 ky BP) related to high hydrothermal activity of hot springs. It consists of two travertine units: (1) a lower massive unit displaying large calcite pseudomorphs after aragonite that precipitated in proximal ponds with abundant water, and (2) an upper stratified unit showing more distal facies bearing siliciclastics and manganese and iron oxides. The replacement of aragonite by calcite in the lower unit was related to the decrease of water salinity in the thermal system through time. In the Antuco travertine, DIC δ 13C values of travertine parental waters of around -9‰ suggest that CO 2 was related to igneous processes and volcanic activity, and released along deep-seated faults. Relative water/rock ratios derived from δ 18O values and fluid-inclusion microthermometric data from travertine carbonates are consistent with an interpretation of greater water availability in the hydrothermal system during the late Pleistocene than at present. The different petrographic features and isotopic signatures are interpreted to reflect increased water availability during more humid periods in the Altiplano, which triggered precipitation of travertine bodies. Travertine growth took place during interglacial-humid climate periods between Marine Isotope Stages (MIS) 3 and 9, which correspond to highstand events in large lakes of the Andean Altiplano. Results of this study illustrate that volcanic activity, furnishing rather constant CO 2 and heat fluxes, were the key controls of thermalism in the Altiplane region during the Quaternary, whilst climatic changes (humid vs. arid periods in the late Pleistocene) controlled mineralogy, facies, and architecture of the travertines. The combined use of δ 13C and 87Sr/ 86Sr signatures in carbonate precipitates has been proven to be of major relevance to evaluate the CO 2 sources along fault zones in this study.
publishDate 2009
dc.date.none.fl_str_mv 2009-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/72900
Gibert, Roger O.; Taberner, Conxita; Sáez, Alberto; Giralt, Santiago; Alonso, Ricardo Narciso; et al.; Igneous origin of Co 2 in ancient and recent hot-spring waters and travertines from the northern argentinean andes; Society for Sedimentary Geology; Journal of Sedimentary Research - (Print); 79; 8; 7-2009; 554-567
1527-1404
1938-3681
CONICET Digital
CONICET
url http://hdl.handle.net/11336/72900
identifier_str_mv Gibert, Roger O.; Taberner, Conxita; Sáez, Alberto; Giralt, Santiago; Alonso, Ricardo Narciso; et al.; Igneous origin of Co 2 in ancient and recent hot-spring waters and travertines from the northern argentinean andes; Society for Sedimentary Geology; Journal of Sedimentary Research - (Print); 79; 8; 7-2009; 554-567
1527-1404
1938-3681
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://pubs.geoscienceworld.org/sepm/jsedres/article/79/8/554-567/145270
info:eu-repo/semantics/altIdentifier/doi/10.2110/jsr.2009.061
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Society for Sedimentary Geology
publisher.none.fl_str_mv Society for Sedimentary Geology
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613773699055616
score 13.070432