Doppler processing in weather radar using deep learning
- Autores
- Collado Rosell, Arturo; Cogo, Jorge; Areta, Javier Alberto; Pascual, Juan Pablo
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A deep learning approach to estimate the mean Doppler velocity and spectral width in weather radars is presented. It can operate in scenarios with and without the presence of ground clutter. The method uses a deep neural network with two branches, one for velocity and the other for spectral width estimation. Different network architectures are analysed and one is selected based on its validation performance, considering both serial and parallel implementations. Training is performed using synthetic data covering a wide range of possible scenarios. Monte Carlo realisations are used to evaluate the performance of the proposed method for different weather conditions. Results are compared against two standard methods, pulse-pair processing (PPP) for signals without ground clutter and Gaussian model adaptive processing (GMAP) for signals contaminated with ground clutter. Better estimates are obtained when comparing the proposed algorithm against GMAP and comparable results when compared against PPP. The performance is also validated using real weather data from the C-band radar RMA-12 located in San Carlos de Bariloche, Argentina. Once trained, the proposed method requires a moderate computational load and has the advantage of processing all the data at once, making it a good candidate for real-time implementations.
Fil: Collado Rosell, Arturo. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comision Nacional de Energia Atomica. Gerencia D/area Invest y Aplicaciones No Nucleares. Gerencia de Des. Tec. y Proyectos Especiales. Departamento de Ingenieria En Telecomunicaciones; Argentina. Universidad Nacional de Cuyo; Argentina
Fil: Cogo, Jorge. Universidad Nacional de Río Negro; Argentina
Fil: Areta, Javier Alberto. Universidad Nacional de Río Negro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina
Fil: Pascual, Juan Pablo. Comision Nacional de Energia Atomica. Gerencia D/area Invest y Aplicaciones No Nucleares. Gerencia de Des. Tec. y Proyectos Especiales. Departamento de Ingenieria En Telecomunicaciones; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Universidad Nacional de Cuyo; Argentina - Materia
-
radar meteorológico
estimación
momentos espectrales
redes neuronales - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/126655
Ver los metadatos del registro completo
| id |
CONICETDig_15d9b4bcd6e87c6c66b5684c6b90adad |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/126655 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Doppler processing in weather radar using deep learningCollado Rosell, ArturoCogo, JorgeAreta, Javier AlbertoPascual, Juan Pabloradar meteorológicoestimaciónmomentos espectralesredes neuronaleshttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2A deep learning approach to estimate the mean Doppler velocity and spectral width in weather radars is presented. It can operate in scenarios with and without the presence of ground clutter. The method uses a deep neural network with two branches, one for velocity and the other for spectral width estimation. Different network architectures are analysed and one is selected based on its validation performance, considering both serial and parallel implementations. Training is performed using synthetic data covering a wide range of possible scenarios. Monte Carlo realisations are used to evaluate the performance of the proposed method for different weather conditions. Results are compared against two standard methods, pulse-pair processing (PPP) for signals without ground clutter and Gaussian model adaptive processing (GMAP) for signals contaminated with ground clutter. Better estimates are obtained when comparing the proposed algorithm against GMAP and comparable results when compared against PPP. The performance is also validated using real weather data from the C-band radar RMA-12 located in San Carlos de Bariloche, Argentina. Once trained, the proposed method requires a moderate computational load and has the advantage of processing all the data at once, making it a good candidate for real-time implementations.Fil: Collado Rosell, Arturo. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comision Nacional de Energia Atomica. Gerencia D/area Invest y Aplicaciones No Nucleares. Gerencia de Des. Tec. y Proyectos Especiales. Departamento de Ingenieria En Telecomunicaciones; Argentina. Universidad Nacional de Cuyo; ArgentinaFil: Cogo, Jorge. Universidad Nacional de Río Negro; ArgentinaFil: Areta, Javier Alberto. Universidad Nacional de Río Negro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: Pascual, Juan Pablo. Comision Nacional de Energia Atomica. Gerencia D/area Invest y Aplicaciones No Nucleares. Gerencia de Des. Tec. y Proyectos Especiales. Departamento de Ingenieria En Telecomunicaciones; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Universidad Nacional de Cuyo; ArgentinaInstitution of Engineering and Technology2020-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/126655Collado Rosell, Arturo; Cogo, Jorge; Areta, Javier Alberto; Pascual, Juan Pablo; Doppler processing in weather radar using deep learning; Institution of Engineering and Technology; Iet Signal Processing; 14; 9; 12-2020; 672-6821751-9675CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://digital-library.theiet.org/content/journals/10.1049/iet-spr.2020.0095info:eu-repo/semantics/altIdentifier/doi/10.1049/iet-spr.2020.0095info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-05T09:45:56Zoai:ri.conicet.gov.ar:11336/126655instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-05 09:45:57.232CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Doppler processing in weather radar using deep learning |
| title |
Doppler processing in weather radar using deep learning |
| spellingShingle |
Doppler processing in weather radar using deep learning Collado Rosell, Arturo radar meteorológico estimación momentos espectrales redes neuronales |
| title_short |
Doppler processing in weather radar using deep learning |
| title_full |
Doppler processing in weather radar using deep learning |
| title_fullStr |
Doppler processing in weather radar using deep learning |
| title_full_unstemmed |
Doppler processing in weather radar using deep learning |
| title_sort |
Doppler processing in weather radar using deep learning |
| dc.creator.none.fl_str_mv |
Collado Rosell, Arturo Cogo, Jorge Areta, Javier Alberto Pascual, Juan Pablo |
| author |
Collado Rosell, Arturo |
| author_facet |
Collado Rosell, Arturo Cogo, Jorge Areta, Javier Alberto Pascual, Juan Pablo |
| author_role |
author |
| author2 |
Cogo, Jorge Areta, Javier Alberto Pascual, Juan Pablo |
| author2_role |
author author author |
| dc.subject.none.fl_str_mv |
radar meteorológico estimación momentos espectrales redes neuronales |
| topic |
radar meteorológico estimación momentos espectrales redes neuronales |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
| dc.description.none.fl_txt_mv |
A deep learning approach to estimate the mean Doppler velocity and spectral width in weather radars is presented. It can operate in scenarios with and without the presence of ground clutter. The method uses a deep neural network with two branches, one for velocity and the other for spectral width estimation. Different network architectures are analysed and one is selected based on its validation performance, considering both serial and parallel implementations. Training is performed using synthetic data covering a wide range of possible scenarios. Monte Carlo realisations are used to evaluate the performance of the proposed method for different weather conditions. Results are compared against two standard methods, pulse-pair processing (PPP) for signals without ground clutter and Gaussian model adaptive processing (GMAP) for signals contaminated with ground clutter. Better estimates are obtained when comparing the proposed algorithm against GMAP and comparable results when compared against PPP. The performance is also validated using real weather data from the C-band radar RMA-12 located in San Carlos de Bariloche, Argentina. Once trained, the proposed method requires a moderate computational load and has the advantage of processing all the data at once, making it a good candidate for real-time implementations. Fil: Collado Rosell, Arturo. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comision Nacional de Energia Atomica. Gerencia D/area Invest y Aplicaciones No Nucleares. Gerencia de Des. Tec. y Proyectos Especiales. Departamento de Ingenieria En Telecomunicaciones; Argentina. Universidad Nacional de Cuyo; Argentina Fil: Cogo, Jorge. Universidad Nacional de Río Negro; Argentina Fil: Areta, Javier Alberto. Universidad Nacional de Río Negro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina Fil: Pascual, Juan Pablo. Comision Nacional de Energia Atomica. Gerencia D/area Invest y Aplicaciones No Nucleares. Gerencia de Des. Tec. y Proyectos Especiales. Departamento de Ingenieria En Telecomunicaciones; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Universidad Nacional de Cuyo; Argentina |
| description |
A deep learning approach to estimate the mean Doppler velocity and spectral width in weather radars is presented. It can operate in scenarios with and without the presence of ground clutter. The method uses a deep neural network with two branches, one for velocity and the other for spectral width estimation. Different network architectures are analysed and one is selected based on its validation performance, considering both serial and parallel implementations. Training is performed using synthetic data covering a wide range of possible scenarios. Monte Carlo realisations are used to evaluate the performance of the proposed method for different weather conditions. Results are compared against two standard methods, pulse-pair processing (PPP) for signals without ground clutter and Gaussian model adaptive processing (GMAP) for signals contaminated with ground clutter. Better estimates are obtained when comparing the proposed algorithm against GMAP and comparable results when compared against PPP. The performance is also validated using real weather data from the C-band radar RMA-12 located in San Carlos de Bariloche, Argentina. Once trained, the proposed method requires a moderate computational load and has the advantage of processing all the data at once, making it a good candidate for real-time implementations. |
| publishDate |
2020 |
| dc.date.none.fl_str_mv |
2020-12 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/126655 Collado Rosell, Arturo; Cogo, Jorge; Areta, Javier Alberto; Pascual, Juan Pablo; Doppler processing in weather radar using deep learning; Institution of Engineering and Technology; Iet Signal Processing; 14; 9; 12-2020; 672-682 1751-9675 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/126655 |
| identifier_str_mv |
Collado Rosell, Arturo; Cogo, Jorge; Areta, Javier Alberto; Pascual, Juan Pablo; Doppler processing in weather radar using deep learning; Institution of Engineering and Technology; Iet Signal Processing; 14; 9; 12-2020; 672-682 1751-9675 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://digital-library.theiet.org/content/journals/10.1049/iet-spr.2020.0095 info:eu-repo/semantics/altIdentifier/doi/10.1049/iet-spr.2020.0095 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Institution of Engineering and Technology |
| publisher.none.fl_str_mv |
Institution of Engineering and Technology |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1847977098437722112 |
| score |
13.084122 |