Combinatorial Flexibility problems and their computational Complexity
- Autores
- Aguilera, Néstor Edgardo; Leoni, Valeria Alejandra; Nasini, Graciela Leonor
- Año de publicación
- 2008
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The concept of flexibility-originated in the context of heat exchanger networks-is associated with a substructure which guarantees the performance of the original structure, in a given range of possible states. We extend this concept to combinatorial optimization problems, and prove several computational complexity results in this new framework. Under some monotonicity conditions, we prove that a combinatorial optimization problem polynomially transforms to its associated flexibility problem, but that the converse need not be true. In order to obtain polynomial flexibility problems, we have to restrict ourselves to combinatorial optimization problems on matroids. We also prove that, when relaxing in different ways the matroid structure, the flexibility problems become NP-complete. This fact is shown by proving the NP-completeness of the flexibility problems associated with the Shortest Path, Minimum Cut and Weighted Matching problems.
Fil: Aguilera, Néstor Edgardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Leoni, Valeria Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario; Argentina
Fil: Nasini, Graciela Leonor. Universidad Nacional de Rosario; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina - Materia
-
COMBINATORIAL PROBLEMS
COMPUTATIONAL COMPLEXITY
FLEXIBILITY - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/84281
Ver los metadatos del registro completo
id |
CONICETDig_12c686c9267273ad85448939954a85dd |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/84281 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Combinatorial Flexibility problems and their computational ComplexityAguilera, Néstor EdgardoLeoni, Valeria AlejandraNasini, Graciela LeonorCOMBINATORIAL PROBLEMSCOMPUTATIONAL COMPLEXITYFLEXIBILITYhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The concept of flexibility-originated in the context of heat exchanger networks-is associated with a substructure which guarantees the performance of the original structure, in a given range of possible states. We extend this concept to combinatorial optimization problems, and prove several computational complexity results in this new framework. Under some monotonicity conditions, we prove that a combinatorial optimization problem polynomially transforms to its associated flexibility problem, but that the converse need not be true. In order to obtain polynomial flexibility problems, we have to restrict ourselves to combinatorial optimization problems on matroids. We also prove that, when relaxing in different ways the matroid structure, the flexibility problems become NP-complete. This fact is shown by proving the NP-completeness of the flexibility problems associated with the Shortest Path, Minimum Cut and Weighted Matching problems.Fil: Aguilera, Néstor Edgardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Leoni, Valeria Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario; ArgentinaFil: Nasini, Graciela Leonor. Universidad Nacional de Rosario; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; ArgentinaElsevier2008-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/84281Aguilera, Néstor Edgardo; Leoni, Valeria Alejandra; Nasini, Graciela Leonor; Combinatorial Flexibility problems and their computational Complexity; Elsevier; Electronic Notes in Discrete Mathematics; 30; C; 2-2008; 303-3081571-0653CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.endm.2008.01.052info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-17T11:45:41Zoai:ri.conicet.gov.ar:11336/84281instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-17 11:45:41.787CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Combinatorial Flexibility problems and their computational Complexity |
title |
Combinatorial Flexibility problems and their computational Complexity |
spellingShingle |
Combinatorial Flexibility problems and their computational Complexity Aguilera, Néstor Edgardo COMBINATORIAL PROBLEMS COMPUTATIONAL COMPLEXITY FLEXIBILITY |
title_short |
Combinatorial Flexibility problems and their computational Complexity |
title_full |
Combinatorial Flexibility problems and their computational Complexity |
title_fullStr |
Combinatorial Flexibility problems and their computational Complexity |
title_full_unstemmed |
Combinatorial Flexibility problems and their computational Complexity |
title_sort |
Combinatorial Flexibility problems and their computational Complexity |
dc.creator.none.fl_str_mv |
Aguilera, Néstor Edgardo Leoni, Valeria Alejandra Nasini, Graciela Leonor |
author |
Aguilera, Néstor Edgardo |
author_facet |
Aguilera, Néstor Edgardo Leoni, Valeria Alejandra Nasini, Graciela Leonor |
author_role |
author |
author2 |
Leoni, Valeria Alejandra Nasini, Graciela Leonor |
author2_role |
author author |
dc.subject.none.fl_str_mv |
COMBINATORIAL PROBLEMS COMPUTATIONAL COMPLEXITY FLEXIBILITY |
topic |
COMBINATORIAL PROBLEMS COMPUTATIONAL COMPLEXITY FLEXIBILITY |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The concept of flexibility-originated in the context of heat exchanger networks-is associated with a substructure which guarantees the performance of the original structure, in a given range of possible states. We extend this concept to combinatorial optimization problems, and prove several computational complexity results in this new framework. Under some monotonicity conditions, we prove that a combinatorial optimization problem polynomially transforms to its associated flexibility problem, but that the converse need not be true. In order to obtain polynomial flexibility problems, we have to restrict ourselves to combinatorial optimization problems on matroids. We also prove that, when relaxing in different ways the matroid structure, the flexibility problems become NP-complete. This fact is shown by proving the NP-completeness of the flexibility problems associated with the Shortest Path, Minimum Cut and Weighted Matching problems. Fil: Aguilera, Néstor Edgardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina Fil: Leoni, Valeria Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario; Argentina Fil: Nasini, Graciela Leonor. Universidad Nacional de Rosario; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina |
description |
The concept of flexibility-originated in the context of heat exchanger networks-is associated with a substructure which guarantees the performance of the original structure, in a given range of possible states. We extend this concept to combinatorial optimization problems, and prove several computational complexity results in this new framework. Under some monotonicity conditions, we prove that a combinatorial optimization problem polynomially transforms to its associated flexibility problem, but that the converse need not be true. In order to obtain polynomial flexibility problems, we have to restrict ourselves to combinatorial optimization problems on matroids. We also prove that, when relaxing in different ways the matroid structure, the flexibility problems become NP-complete. This fact is shown by proving the NP-completeness of the flexibility problems associated with the Shortest Path, Minimum Cut and Weighted Matching problems. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/84281 Aguilera, Néstor Edgardo; Leoni, Valeria Alejandra; Nasini, Graciela Leonor; Combinatorial Flexibility problems and their computational Complexity; Elsevier; Electronic Notes in Discrete Mathematics; 30; C; 2-2008; 303-308 1571-0653 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/84281 |
identifier_str_mv |
Aguilera, Néstor Edgardo; Leoni, Valeria Alejandra; Nasini, Graciela Leonor; Combinatorial Flexibility problems and their computational Complexity; Elsevier; Electronic Notes in Discrete Mathematics; 30; C; 2-2008; 303-308 1571-0653 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.endm.2008.01.052 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1843606808118165504 |
score |
13.001348 |