On restricted diagonalization
- Autores
- Chiumiento, Eduardo Hernan; Massey, Pedro Gustavo
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Let H be a separable infinite-dimensional complex Hilbert space, B(H) the algebra of bounded linear operators acting on H and J a proper two-sided ideal of B(H). Denote by UJ(H) the group of all unitary operators of the form I+J. Recall that an operator A∈B(H) is diagonalizable if there exists a unitary operator U such that UAU⁎ is diagonal with respect to some orthonormal basis. A more restrictive notion of diagonalization can be formulated with respect to a fixed orthonormal basis e={en}n≥1 and a proper operator ideal J as follows: A∈B(H) is called restrictedly diagonalizable if there exists U∈UJ(H) such that UAU⁎ is diagonal with respect to e. In this work we give a sufficient condition for a diagonalizable operator to be restrictedly diagonalizable. This condition becomes a characterization when the ideal is arithmetic mean closed. Then we obtain results on the structure of the set of all restrictedly diagonalizable operators. In this way we answer several open problems recently raised by Beltiţă, Patnaik and Weiss.
Fil: Chiumiento, Eduardo Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Massey, Pedro Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina - Materia
-
ESSENTIAL CODIMENSION
OPERATOR IDEAL
RESTRICTED DIAGONALIZATION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/150672
Ver los metadatos del registro completo
id |
CONICETDig_efd5093bab1eb56496bdf2feb03834ad |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/150672 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
On restricted diagonalizationChiumiento, Eduardo HernanMassey, Pedro GustavoESSENTIAL CODIMENSIONOPERATOR IDEALRESTRICTED DIAGONALIZATIONhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let H be a separable infinite-dimensional complex Hilbert space, B(H) the algebra of bounded linear operators acting on H and J a proper two-sided ideal of B(H). Denote by UJ(H) the group of all unitary operators of the form I+J. Recall that an operator A∈B(H) is diagonalizable if there exists a unitary operator U such that UAU⁎ is diagonal with respect to some orthonormal basis. A more restrictive notion of diagonalization can be formulated with respect to a fixed orthonormal basis e={en}n≥1 and a proper operator ideal J as follows: A∈B(H) is called restrictedly diagonalizable if there exists U∈UJ(H) such that UAU⁎ is diagonal with respect to e. In this work we give a sufficient condition for a diagonalizable operator to be restrictedly diagonalizable. This condition becomes a characterization when the ideal is arithmetic mean closed. Then we obtain results on the structure of the set of all restrictedly diagonalizable operators. In this way we answer several open problems recently raised by Beltiţă, Patnaik and Weiss.Fil: Chiumiento, Eduardo Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaFil: Massey, Pedro Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaAcademic Press Inc Elsevier Science2021-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/150672Chiumiento, Eduardo Hernan; Massey, Pedro Gustavo; On restricted diagonalization; Academic Press Inc Elsevier Science; Journal of Functional Analysis; 282; 4; 6-2021; 1-270022-1236CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0022123621004249?via%3Dihubinfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jfa.2021.109342info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2106.06612info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:57:35Zoai:ri.conicet.gov.ar:11336/150672instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:57:35.601CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
On restricted diagonalization |
title |
On restricted diagonalization |
spellingShingle |
On restricted diagonalization Chiumiento, Eduardo Hernan ESSENTIAL CODIMENSION OPERATOR IDEAL RESTRICTED DIAGONALIZATION |
title_short |
On restricted diagonalization |
title_full |
On restricted diagonalization |
title_fullStr |
On restricted diagonalization |
title_full_unstemmed |
On restricted diagonalization |
title_sort |
On restricted diagonalization |
dc.creator.none.fl_str_mv |
Chiumiento, Eduardo Hernan Massey, Pedro Gustavo |
author |
Chiumiento, Eduardo Hernan |
author_facet |
Chiumiento, Eduardo Hernan Massey, Pedro Gustavo |
author_role |
author |
author2 |
Massey, Pedro Gustavo |
author2_role |
author |
dc.subject.none.fl_str_mv |
ESSENTIAL CODIMENSION OPERATOR IDEAL RESTRICTED DIAGONALIZATION |
topic |
ESSENTIAL CODIMENSION OPERATOR IDEAL RESTRICTED DIAGONALIZATION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Let H be a separable infinite-dimensional complex Hilbert space, B(H) the algebra of bounded linear operators acting on H and J a proper two-sided ideal of B(H). Denote by UJ(H) the group of all unitary operators of the form I+J. Recall that an operator A∈B(H) is diagonalizable if there exists a unitary operator U such that UAU⁎ is diagonal with respect to some orthonormal basis. A more restrictive notion of diagonalization can be formulated with respect to a fixed orthonormal basis e={en}n≥1 and a proper operator ideal J as follows: A∈B(H) is called restrictedly diagonalizable if there exists U∈UJ(H) such that UAU⁎ is diagonal with respect to e. In this work we give a sufficient condition for a diagonalizable operator to be restrictedly diagonalizable. This condition becomes a characterization when the ideal is arithmetic mean closed. Then we obtain results on the structure of the set of all restrictedly diagonalizable operators. In this way we answer several open problems recently raised by Beltiţă, Patnaik and Weiss. Fil: Chiumiento, Eduardo Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina Fil: Massey, Pedro Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina |
description |
Let H be a separable infinite-dimensional complex Hilbert space, B(H) the algebra of bounded linear operators acting on H and J a proper two-sided ideal of B(H). Denote by UJ(H) the group of all unitary operators of the form I+J. Recall that an operator A∈B(H) is diagonalizable if there exists a unitary operator U such that UAU⁎ is diagonal with respect to some orthonormal basis. A more restrictive notion of diagonalization can be formulated with respect to a fixed orthonormal basis e={en}n≥1 and a proper operator ideal J as follows: A∈B(H) is called restrictedly diagonalizable if there exists U∈UJ(H) such that UAU⁎ is diagonal with respect to e. In this work we give a sufficient condition for a diagonalizable operator to be restrictedly diagonalizable. This condition becomes a characterization when the ideal is arithmetic mean closed. Then we obtain results on the structure of the set of all restrictedly diagonalizable operators. In this way we answer several open problems recently raised by Beltiţă, Patnaik and Weiss. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/150672 Chiumiento, Eduardo Hernan; Massey, Pedro Gustavo; On restricted diagonalization; Academic Press Inc Elsevier Science; Journal of Functional Analysis; 282; 4; 6-2021; 1-27 0022-1236 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/150672 |
identifier_str_mv |
Chiumiento, Eduardo Hernan; Massey, Pedro Gustavo; On restricted diagonalization; Academic Press Inc Elsevier Science; Journal of Functional Analysis; 282; 4; 6-2021; 1-27 0022-1236 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0022123621004249?via%3Dihub info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jfa.2021.109342 info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2106.06612 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083115122950145 |
score |
13.22299 |