Radiation Damage Mechanisms of Monolayer-Protected Nanoparticles via TEM Analysis

Autores
Azcárate, Julio César; Fonticelli, Mariano Hernan; Zelaya, Maria Eugenia
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this work, it is shown that thiol-protected Au nanoparticles (AuNPs@SR) of approximately 3.4 nm size suffered unexpectedly high radiation damage under standard transmission electron microscopy (TEM) operating conditions. For metallic systems (conducting sample), it is expected that the greatest contribution to the damage comes from knock-on displacement, but radiolysis is the most probable radiation damage mechanism for organic samples. The radiation damage of the electron beam produces huge changes in AuNPs' structure, leading to coalescence of the Au cores when their {100} surfaces are facing each other. The complete coalescence process involve thiol desoprtion, AuNPs' reorientation, and surface diffusion of Au adatoms, which produce the oriented attachment of the Au cores. The knock-on displacement cannot explain by itself the time taken by the entire process. Through a rigorous analysis, we rationalize the results considering that because of the small size of AuNPs they have a lower electron density than the bulk material which favors radiolytic damage.
Fil: Azcárate, Julio César. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); Argentina
Fil: Fonticelli, Mariano Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina
Fil: Zelaya, Maria Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); Argentina
Materia
Nanoparticles
Radiation damage
TEM
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/70478

id CONICETDig_14641ae3a6ed7aed68f8ecdd3eae9768
oai_identifier_str oai:ri.conicet.gov.ar:11336/70478
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Radiation Damage Mechanisms of Monolayer-Protected Nanoparticles via TEM AnalysisAzcárate, Julio CésarFonticelli, Mariano HernanZelaya, Maria EugeniaNanoparticlesRadiation damageTEMhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1In this work, it is shown that thiol-protected Au nanoparticles (AuNPs@SR) of approximately 3.4 nm size suffered unexpectedly high radiation damage under standard transmission electron microscopy (TEM) operating conditions. For metallic systems (conducting sample), it is expected that the greatest contribution to the damage comes from knock-on displacement, but radiolysis is the most probable radiation damage mechanism for organic samples. The radiation damage of the electron beam produces huge changes in AuNPs' structure, leading to coalescence of the Au cores when their {100} surfaces are facing each other. The complete coalescence process involve thiol desoprtion, AuNPs' reorientation, and surface diffusion of Au adatoms, which produce the oriented attachment of the Au cores. The knock-on displacement cannot explain by itself the time taken by the entire process. Through a rigorous analysis, we rationalize the results considering that because of the small size of AuNPs they have a lower electron density than the bulk material which favors radiolytic damage.Fil: Azcárate, Julio César. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); ArgentinaFil: Fonticelli, Mariano Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Zelaya, Maria Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); ArgentinaAmerican Chemical Society2017-11-19info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/70478Azcárate, Julio César; Fonticelli, Mariano Hernan; Zelaya, Maria Eugenia; Radiation Damage Mechanisms of Monolayer-Protected Nanoparticles via TEM Analysis; American Chemical Society; Journal of Physical Chemistry C; 121; 46; 19-11-2017; 26108-261161932-7447CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/10.1021/acs.jpcc.7b08525info:eu-repo/semantics/altIdentifier/doi/10.1021/acs.jpcc.7b08525info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:46:22Zoai:ri.conicet.gov.ar:11336/70478instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:46:22.848CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Radiation Damage Mechanisms of Monolayer-Protected Nanoparticles via TEM Analysis
title Radiation Damage Mechanisms of Monolayer-Protected Nanoparticles via TEM Analysis
spellingShingle Radiation Damage Mechanisms of Monolayer-Protected Nanoparticles via TEM Analysis
Azcárate, Julio César
Nanoparticles
Radiation damage
TEM
title_short Radiation Damage Mechanisms of Monolayer-Protected Nanoparticles via TEM Analysis
title_full Radiation Damage Mechanisms of Monolayer-Protected Nanoparticles via TEM Analysis
title_fullStr Radiation Damage Mechanisms of Monolayer-Protected Nanoparticles via TEM Analysis
title_full_unstemmed Radiation Damage Mechanisms of Monolayer-Protected Nanoparticles via TEM Analysis
title_sort Radiation Damage Mechanisms of Monolayer-Protected Nanoparticles via TEM Analysis
dc.creator.none.fl_str_mv Azcárate, Julio César
Fonticelli, Mariano Hernan
Zelaya, Maria Eugenia
author Azcárate, Julio César
author_facet Azcárate, Julio César
Fonticelli, Mariano Hernan
Zelaya, Maria Eugenia
author_role author
author2 Fonticelli, Mariano Hernan
Zelaya, Maria Eugenia
author2_role author
author
dc.subject.none.fl_str_mv Nanoparticles
Radiation damage
TEM
topic Nanoparticles
Radiation damage
TEM
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this work, it is shown that thiol-protected Au nanoparticles (AuNPs@SR) of approximately 3.4 nm size suffered unexpectedly high radiation damage under standard transmission electron microscopy (TEM) operating conditions. For metallic systems (conducting sample), it is expected that the greatest contribution to the damage comes from knock-on displacement, but radiolysis is the most probable radiation damage mechanism for organic samples. The radiation damage of the electron beam produces huge changes in AuNPs' structure, leading to coalescence of the Au cores when their {100} surfaces are facing each other. The complete coalescence process involve thiol desoprtion, AuNPs' reorientation, and surface diffusion of Au adatoms, which produce the oriented attachment of the Au cores. The knock-on displacement cannot explain by itself the time taken by the entire process. Through a rigorous analysis, we rationalize the results considering that because of the small size of AuNPs they have a lower electron density than the bulk material which favors radiolytic damage.
Fil: Azcárate, Julio César. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); Argentina
Fil: Fonticelli, Mariano Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina
Fil: Zelaya, Maria Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); Argentina
description In this work, it is shown that thiol-protected Au nanoparticles (AuNPs@SR) of approximately 3.4 nm size suffered unexpectedly high radiation damage under standard transmission electron microscopy (TEM) operating conditions. For metallic systems (conducting sample), it is expected that the greatest contribution to the damage comes from knock-on displacement, but radiolysis is the most probable radiation damage mechanism for organic samples. The radiation damage of the electron beam produces huge changes in AuNPs' structure, leading to coalescence of the Au cores when their {100} surfaces are facing each other. The complete coalescence process involve thiol desoprtion, AuNPs' reorientation, and surface diffusion of Au adatoms, which produce the oriented attachment of the Au cores. The knock-on displacement cannot explain by itself the time taken by the entire process. Through a rigorous analysis, we rationalize the results considering that because of the small size of AuNPs they have a lower electron density than the bulk material which favors radiolytic damage.
publishDate 2017
dc.date.none.fl_str_mv 2017-11-19
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/70478
Azcárate, Julio César; Fonticelli, Mariano Hernan; Zelaya, Maria Eugenia; Radiation Damage Mechanisms of Monolayer-Protected Nanoparticles via TEM Analysis; American Chemical Society; Journal of Physical Chemistry C; 121; 46; 19-11-2017; 26108-26116
1932-7447
CONICET Digital
CONICET
url http://hdl.handle.net/11336/70478
identifier_str_mv Azcárate, Julio César; Fonticelli, Mariano Hernan; Zelaya, Maria Eugenia; Radiation Damage Mechanisms of Monolayer-Protected Nanoparticles via TEM Analysis; American Chemical Society; Journal of Physical Chemistry C; 121; 46; 19-11-2017; 26108-26116
1932-7447
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/10.1021/acs.jpcc.7b08525
info:eu-repo/semantics/altIdentifier/doi/10.1021/acs.jpcc.7b08525
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Chemical Society
publisher.none.fl_str_mv American Chemical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613448445460480
score 13.070432