Aging promotes a different phosphatidic acid utilization in cytosolic and microsomal fractions from brain and liver

Autores
Pasquaré, Susana Juana; Ilincheta, Monica Graciela; Giusto, Norma Maria
Año de publicación
2001
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Among the morphological and biochemical changes taking place in the membranes of aged tissues, we reported in previous studies on alterations in phospholipid synthesis and phospholipid-specific fatty acid composition. Phosphatidic acid (PA) and diacylglycerol (DAG) are central intermediates in phosphoglyceride and neutral lipid biosynthetic pathways and have also recently been implicated in signal transduction. The present paper shows the effect of aging on phosphatidate phosphohydrolase (PAPase) activiy, which operates on phosphatidic acid to synthesize diacylglycerol. Two forms of mammalian PAPase can be indentified on the basis of subcellular localization and enzyme properties, one involved predominantly in lipid synthesis (PAP 1) and the other in signal transduction (PAP 2). Microsomal and cytosolic fractions of brain and liver from 3.5-month-old (adult) and 28.5-month-old (aged) rats were used. PAPase isoform activities were differentiated on the basis of N-ethylmaleimide (NEM) sensitivity and Mg2+-dependency. Our results demonstrate that aging caused PAP 2 to increase in brain microsomal fractions but did not affect PAP 1, whereas in brain cytosolic fractions, it caused a strong decrease in PAP 1 (57%). The distribution of enzymes between microsomes and cytosol changed in aged rats with respect to adult rats, showing a translocation of PAP 1 from cytosol to microsomes. In addition, an increase in the production of monoacylglycerol (MAG) was observed in microsomes from aged brain. PAP 2 activity in liver microsomal fractions from aged rats showed no changes with respect to adult rats whereas PAP 1 activity increased 228% in microsomal fractions and 76% in cytosolic fractions in this tissue. The distribution of PAP 1 activity between microsomal and cytosolic fractions in liver tissue was also affected in aged rats, indicating a translocation of this form of the enzyme from cytosolic to microsomal fractions. The production of monoacylglycerol in liver microsomes also increased, whereas there was a decrease in MAG formation from cytosolic fraction. The changes observed in the two PAPase forms in brain and liver of aged rats with respect to adult rats suggest that PA is differently utilized by the PAPase isoforms, probably generating aging-related DAGs different to those present in adults and required for specific cellular functions. The changes observed in liver PAP 1 from aged with respect to adult rats suggest that such changes could be related with modifications in lipid homeostasis induced by age-altered hormonal balance. However, PA-modified utilization during aging through PAP 2 activity could be related to alterations in neural signal transduction mechanisms.
Fil: Pasquaré, Susana Juana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Bioquímicas de Bahía Blanca. Universidad Nacional del Sur. Instituto de Investigaciones Bioquímicas de Bahía Blanca; Argentina
Fil: Ilincheta, Monica Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Bioquímicas de Bahía Blanca. Universidad Nacional del Sur. Instituto de Investigaciones Bioquímicas de Bahía Blanca; Argentina
Fil: Giusto, Norma Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Bioquímicas de Bahía Blanca. Universidad Nacional del Sur. Instituto de Investigaciones Bioquímicas de Bahía Blanca; Argentina
Materia
Aging
Brain
Diacylglycerol
Liver
Phosphatidate Phosphohydrolase
Phosphatidic Acid
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/53071

id CONICETDig_142535fd56566f8b256011e07ef99550
oai_identifier_str oai:ri.conicet.gov.ar:11336/53071
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Aging promotes a different phosphatidic acid utilization in cytosolic and microsomal fractions from brain and liverPasquaré, Susana JuanaIlincheta, Monica GracielaGiusto, Norma MariaAgingBrainDiacylglycerolLiverPhosphatidate PhosphohydrolasePhosphatidic Acidhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Among the morphological and biochemical changes taking place in the membranes of aged tissues, we reported in previous studies on alterations in phospholipid synthesis and phospholipid-specific fatty acid composition. Phosphatidic acid (PA) and diacylglycerol (DAG) are central intermediates in phosphoglyceride and neutral lipid biosynthetic pathways and have also recently been implicated in signal transduction. The present paper shows the effect of aging on phosphatidate phosphohydrolase (PAPase) activiy, which operates on phosphatidic acid to synthesize diacylglycerol. Two forms of mammalian PAPase can be indentified on the basis of subcellular localization and enzyme properties, one involved predominantly in lipid synthesis (PAP 1) and the other in signal transduction (PAP 2). Microsomal and cytosolic fractions of brain and liver from 3.5-month-old (adult) and 28.5-month-old (aged) rats were used. PAPase isoform activities were differentiated on the basis of N-ethylmaleimide (NEM) sensitivity and Mg2+-dependency. Our results demonstrate that aging caused PAP 2 to increase in brain microsomal fractions but did not affect PAP 1, whereas in brain cytosolic fractions, it caused a strong decrease in PAP 1 (57%). The distribution of enzymes between microsomes and cytosol changed in aged rats with respect to adult rats, showing a translocation of PAP 1 from cytosol to microsomes. In addition, an increase in the production of monoacylglycerol (MAG) was observed in microsomes from aged brain. PAP 2 activity in liver microsomal fractions from aged rats showed no changes with respect to adult rats whereas PAP 1 activity increased 228% in microsomal fractions and 76% in cytosolic fractions in this tissue. The distribution of PAP 1 activity between microsomal and cytosolic fractions in liver tissue was also affected in aged rats, indicating a translocation of this form of the enzyme from cytosolic to microsomal fractions. The production of monoacylglycerol in liver microsomes also increased, whereas there was a decrease in MAG formation from cytosolic fraction. The changes observed in the two PAPase forms in brain and liver of aged rats with respect to adult rats suggest that PA is differently utilized by the PAPase isoforms, probably generating aging-related DAGs different to those present in adults and required for specific cellular functions. The changes observed in liver PAP 1 from aged with respect to adult rats suggest that such changes could be related with modifications in lipid homeostasis induced by age-altered hormonal balance. However, PA-modified utilization during aging through PAP 2 activity could be related to alterations in neural signal transduction mechanisms.Fil: Pasquaré, Susana Juana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Bioquímicas de Bahía Blanca. Universidad Nacional del Sur. Instituto de Investigaciones Bioquímicas de Bahía Blanca; ArgentinaFil: Ilincheta, Monica Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Bioquímicas de Bahía Blanca. Universidad Nacional del Sur. Instituto de Investigaciones Bioquímicas de Bahía Blanca; ArgentinaFil: Giusto, Norma Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Bioquímicas de Bahía Blanca. Universidad Nacional del Sur. Instituto de Investigaciones Bioquímicas de Bahía Blanca; ArgentinaPergamon-Elsevier Science Ltd2001-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/53071Pasquaré, Susana Juana; Ilincheta, Monica Graciela; Giusto, Norma Maria; Aging promotes a different phosphatidic acid utilization in cytosolic and microsomal fractions from brain and liver; Pergamon-Elsevier Science Ltd; Experimental Gerontology; 36; 8; 8-2001; 1387-14010531-5565CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/S0531-5565(01)00106-1info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0531556501001061info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:54:23Zoai:ri.conicet.gov.ar:11336/53071instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:54:23.285CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Aging promotes a different phosphatidic acid utilization in cytosolic and microsomal fractions from brain and liver
title Aging promotes a different phosphatidic acid utilization in cytosolic and microsomal fractions from brain and liver
spellingShingle Aging promotes a different phosphatidic acid utilization in cytosolic and microsomal fractions from brain and liver
Pasquaré, Susana Juana
Aging
Brain
Diacylglycerol
Liver
Phosphatidate Phosphohydrolase
Phosphatidic Acid
title_short Aging promotes a different phosphatidic acid utilization in cytosolic and microsomal fractions from brain and liver
title_full Aging promotes a different phosphatidic acid utilization in cytosolic and microsomal fractions from brain and liver
title_fullStr Aging promotes a different phosphatidic acid utilization in cytosolic and microsomal fractions from brain and liver
title_full_unstemmed Aging promotes a different phosphatidic acid utilization in cytosolic and microsomal fractions from brain and liver
title_sort Aging promotes a different phosphatidic acid utilization in cytosolic and microsomal fractions from brain and liver
dc.creator.none.fl_str_mv Pasquaré, Susana Juana
Ilincheta, Monica Graciela
Giusto, Norma Maria
author Pasquaré, Susana Juana
author_facet Pasquaré, Susana Juana
Ilincheta, Monica Graciela
Giusto, Norma Maria
author_role author
author2 Ilincheta, Monica Graciela
Giusto, Norma Maria
author2_role author
author
dc.subject.none.fl_str_mv Aging
Brain
Diacylglycerol
Liver
Phosphatidate Phosphohydrolase
Phosphatidic Acid
topic Aging
Brain
Diacylglycerol
Liver
Phosphatidate Phosphohydrolase
Phosphatidic Acid
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Among the morphological and biochemical changes taking place in the membranes of aged tissues, we reported in previous studies on alterations in phospholipid synthesis and phospholipid-specific fatty acid composition. Phosphatidic acid (PA) and diacylglycerol (DAG) are central intermediates in phosphoglyceride and neutral lipid biosynthetic pathways and have also recently been implicated in signal transduction. The present paper shows the effect of aging on phosphatidate phosphohydrolase (PAPase) activiy, which operates on phosphatidic acid to synthesize diacylglycerol. Two forms of mammalian PAPase can be indentified on the basis of subcellular localization and enzyme properties, one involved predominantly in lipid synthesis (PAP 1) and the other in signal transduction (PAP 2). Microsomal and cytosolic fractions of brain and liver from 3.5-month-old (adult) and 28.5-month-old (aged) rats were used. PAPase isoform activities were differentiated on the basis of N-ethylmaleimide (NEM) sensitivity and Mg2+-dependency. Our results demonstrate that aging caused PAP 2 to increase in brain microsomal fractions but did not affect PAP 1, whereas in brain cytosolic fractions, it caused a strong decrease in PAP 1 (57%). The distribution of enzymes between microsomes and cytosol changed in aged rats with respect to adult rats, showing a translocation of PAP 1 from cytosol to microsomes. In addition, an increase in the production of monoacylglycerol (MAG) was observed in microsomes from aged brain. PAP 2 activity in liver microsomal fractions from aged rats showed no changes with respect to adult rats whereas PAP 1 activity increased 228% in microsomal fractions and 76% in cytosolic fractions in this tissue. The distribution of PAP 1 activity between microsomal and cytosolic fractions in liver tissue was also affected in aged rats, indicating a translocation of this form of the enzyme from cytosolic to microsomal fractions. The production of monoacylglycerol in liver microsomes also increased, whereas there was a decrease in MAG formation from cytosolic fraction. The changes observed in the two PAPase forms in brain and liver of aged rats with respect to adult rats suggest that PA is differently utilized by the PAPase isoforms, probably generating aging-related DAGs different to those present in adults and required for specific cellular functions. The changes observed in liver PAP 1 from aged with respect to adult rats suggest that such changes could be related with modifications in lipid homeostasis induced by age-altered hormonal balance. However, PA-modified utilization during aging through PAP 2 activity could be related to alterations in neural signal transduction mechanisms.
Fil: Pasquaré, Susana Juana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Bioquímicas de Bahía Blanca. Universidad Nacional del Sur. Instituto de Investigaciones Bioquímicas de Bahía Blanca; Argentina
Fil: Ilincheta, Monica Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Bioquímicas de Bahía Blanca. Universidad Nacional del Sur. Instituto de Investigaciones Bioquímicas de Bahía Blanca; Argentina
Fil: Giusto, Norma Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Bioquímicas de Bahía Blanca. Universidad Nacional del Sur. Instituto de Investigaciones Bioquímicas de Bahía Blanca; Argentina
description Among the morphological and biochemical changes taking place in the membranes of aged tissues, we reported in previous studies on alterations in phospholipid synthesis and phospholipid-specific fatty acid composition. Phosphatidic acid (PA) and diacylglycerol (DAG) are central intermediates in phosphoglyceride and neutral lipid biosynthetic pathways and have also recently been implicated in signal transduction. The present paper shows the effect of aging on phosphatidate phosphohydrolase (PAPase) activiy, which operates on phosphatidic acid to synthesize diacylglycerol. Two forms of mammalian PAPase can be indentified on the basis of subcellular localization and enzyme properties, one involved predominantly in lipid synthesis (PAP 1) and the other in signal transduction (PAP 2). Microsomal and cytosolic fractions of brain and liver from 3.5-month-old (adult) and 28.5-month-old (aged) rats were used. PAPase isoform activities were differentiated on the basis of N-ethylmaleimide (NEM) sensitivity and Mg2+-dependency. Our results demonstrate that aging caused PAP 2 to increase in brain microsomal fractions but did not affect PAP 1, whereas in brain cytosolic fractions, it caused a strong decrease in PAP 1 (57%). The distribution of enzymes between microsomes and cytosol changed in aged rats with respect to adult rats, showing a translocation of PAP 1 from cytosol to microsomes. In addition, an increase in the production of monoacylglycerol (MAG) was observed in microsomes from aged brain. PAP 2 activity in liver microsomal fractions from aged rats showed no changes with respect to adult rats whereas PAP 1 activity increased 228% in microsomal fractions and 76% in cytosolic fractions in this tissue. The distribution of PAP 1 activity between microsomal and cytosolic fractions in liver tissue was also affected in aged rats, indicating a translocation of this form of the enzyme from cytosolic to microsomal fractions. The production of monoacylglycerol in liver microsomes also increased, whereas there was a decrease in MAG formation from cytosolic fraction. The changes observed in the two PAPase forms in brain and liver of aged rats with respect to adult rats suggest that PA is differently utilized by the PAPase isoforms, probably generating aging-related DAGs different to those present in adults and required for specific cellular functions. The changes observed in liver PAP 1 from aged with respect to adult rats suggest that such changes could be related with modifications in lipid homeostasis induced by age-altered hormonal balance. However, PA-modified utilization during aging through PAP 2 activity could be related to alterations in neural signal transduction mechanisms.
publishDate 2001
dc.date.none.fl_str_mv 2001-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/53071
Pasquaré, Susana Juana; Ilincheta, Monica Graciela; Giusto, Norma Maria; Aging promotes a different phosphatidic acid utilization in cytosolic and microsomal fractions from brain and liver; Pergamon-Elsevier Science Ltd; Experimental Gerontology; 36; 8; 8-2001; 1387-1401
0531-5565
CONICET Digital
CONICET
url http://hdl.handle.net/11336/53071
identifier_str_mv Pasquaré, Susana Juana; Ilincheta, Monica Graciela; Giusto, Norma Maria; Aging promotes a different phosphatidic acid utilization in cytosolic and microsomal fractions from brain and liver; Pergamon-Elsevier Science Ltd; Experimental Gerontology; 36; 8; 8-2001; 1387-1401
0531-5565
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/S0531-5565(01)00106-1
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0531556501001061
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269282847686656
score 13.13397