“Big Data Assimilation” Toward Post-Petascale Severe Weather Prediction: An Overview and Progress
- Autores
- Miyoshi, Takemasa; Lien, Guo-Yuan; Satoh, Shinsuke; Ushio, Tomoo; Bessho, Kotaro; Tomita, Hirofumi; Nishizawa, Seiya; Yoshida, Ryuji; Adachi, Sachiho A.; Liao, Jianwei; Gerofi, Balazs; Ishikawa, Yutaka; Kunii, Masaru; Ruiz, Juan Jose; Maejima, Yasumitsu; Otsuka, Shigenori; Otsuka, Michiko; Okamoto, Kozo; Seko, Hiromu
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Following the invention of the telegraph, electronic computer, and remote sensing, “big data” is bringing another revolution to weather prediction. As sensor and computer technologies advance, orders of magnitude bigger data are produced by new sensors and high-precision computer simulation or “big simulation.” Data assimilation (DA) is a key to numerical weather prediction (NWP) by integrating the real-world sensor data into simulation. However, the current DA and NWP systems are not designed to handle the “big data” from next-generation sensors and big simulation. Therefore, we propose “big data assimilation” (BDA) innovation to fully utilize the big data. Since October 2013, the Japan's BDA project has been exploring revolutionary NWP at 100-m mesh refreshed every 30 s, orders of magnitude finer and faster than the current typical NWP systems, by taking advantage of the fortunate combination of next-generation technologies: the 10-petaflops K computer, phased array weather radar, and geostationary satellite Himawari-8. So far, a BDA prototype system was developed and tested with real-world retrospective local rainstorm cases. This paper summarizes the activities and progress of the BDA project, and concludes with perspectives toward the post-petascale supercomputing era.
Fil: Miyoshi, Takemasa. RIKEN Advanced Institute for Computational Science; Japón
Fil: Lien, Guo-Yuan. RIKEN Advanced Institute for Computational Science; Japón
Fil: Satoh, Shinsuke. National Institute of Information and Communications Technology; Japón
Fil: Ushio, Tomoo. Osaka University; Japón
Fil: Bessho, Kotaro. Meteorological Satellite Center; Japón
Fil: Tomita, Hirofumi. RIKEN Advanced Institute for Computational Science; Japón
Fil: Nishizawa, Seiya. RIKEN Advanced Institute for Computational Science; Japón
Fil: Yoshida, Ryuji. RIKEN Advanced Institute for Computational Science; Japón
Fil: Adachi, Sachiho A.. RIKEN Advanced Institute for Computational Science; Japón
Fil: Liao, Jianwei. RIKEN Advanced Institute for Computational Science; Japón
Fil: Gerofi, Balazs. RIKEN Advanced Institute for Computational Science; Japón
Fil: Ishikawa, Yutaka. RIKEN Advanced Institute for Computational Science; Japón
Fil: Kunii, Masaru. RIKEN Advanced Institute for Computational Science; Japón
Fil: Ruiz, Juan Jose. RIKEN Advanced Institute for Computational Science; Japón. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Maejima, Yasumitsu. RIKEN Advanced Institute for Computational Science; Japón
Fil: Otsuka, Shigenori. RIKEN Advanced Institute for Computational Science; Japón
Fil: Otsuka, Michiko. RIKEN Advanced Institute for Computational Science; Japón
Fil: Okamoto, Kozo. RIKEN Advanced Institute for Computational Science; Japón
Fil: Seko, Hiromu. Meteorological Research Institute; Japón - Materia
-
atmospheric mesaurements
computer applications
kalman filtering
optimal control - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/60304
Ver los metadatos del registro completo
id |
CONICETDig_1405220fa9c2ddd34b4310accbd42532 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/60304 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
“Big Data Assimilation” Toward Post-Petascale Severe Weather Prediction: An Overview and ProgressMiyoshi, TakemasaLien, Guo-YuanSatoh, ShinsukeUshio, TomooBessho, KotaroTomita, HirofumiNishizawa, SeiyaYoshida, RyujiAdachi, Sachiho A.Liao, JianweiGerofi, BalazsIshikawa, YutakaKunii, MasaruRuiz, Juan JoseMaejima, YasumitsuOtsuka, ShigenoriOtsuka, MichikoOkamoto, KozoSeko, Hiromuatmospheric mesaurementscomputer applicationskalman filteringoptimal controlhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1Following the invention of the telegraph, electronic computer, and remote sensing, “big data” is bringing another revolution to weather prediction. As sensor and computer technologies advance, orders of magnitude bigger data are produced by new sensors and high-precision computer simulation or “big simulation.” Data assimilation (DA) is a key to numerical weather prediction (NWP) by integrating the real-world sensor data into simulation. However, the current DA and NWP systems are not designed to handle the “big data” from next-generation sensors and big simulation. Therefore, we propose “big data assimilation” (BDA) innovation to fully utilize the big data. Since October 2013, the Japan's BDA project has been exploring revolutionary NWP at 100-m mesh refreshed every 30 s, orders of magnitude finer and faster than the current typical NWP systems, by taking advantage of the fortunate combination of next-generation technologies: the 10-petaflops K computer, phased array weather radar, and geostationary satellite Himawari-8. So far, a BDA prototype system was developed and tested with real-world retrospective local rainstorm cases. This paper summarizes the activities and progress of the BDA project, and concludes with perspectives toward the post-petascale supercomputing era.Fil: Miyoshi, Takemasa. RIKEN Advanced Institute for Computational Science; JapónFil: Lien, Guo-Yuan. RIKEN Advanced Institute for Computational Science; JapónFil: Satoh, Shinsuke. National Institute of Information and Communications Technology; JapónFil: Ushio, Tomoo. Osaka University; JapónFil: Bessho, Kotaro. Meteorological Satellite Center; JapónFil: Tomita, Hirofumi. RIKEN Advanced Institute for Computational Science; JapónFil: Nishizawa, Seiya. RIKEN Advanced Institute for Computational Science; JapónFil: Yoshida, Ryuji. RIKEN Advanced Institute for Computational Science; JapónFil: Adachi, Sachiho A.. RIKEN Advanced Institute for Computational Science; JapónFil: Liao, Jianwei. RIKEN Advanced Institute for Computational Science; JapónFil: Gerofi, Balazs. RIKEN Advanced Institute for Computational Science; JapónFil: Ishikawa, Yutaka. RIKEN Advanced Institute for Computational Science; JapónFil: Kunii, Masaru. RIKEN Advanced Institute for Computational Science; JapónFil: Ruiz, Juan Jose. RIKEN Advanced Institute for Computational Science; Japón. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Maejima, Yasumitsu. RIKEN Advanced Institute for Computational Science; JapónFil: Otsuka, Shigenori. RIKEN Advanced Institute for Computational Science; JapónFil: Otsuka, Michiko. RIKEN Advanced Institute for Computational Science; JapónFil: Okamoto, Kozo. RIKEN Advanced Institute for Computational Science; JapónFil: Seko, Hiromu. Meteorological Research Institute; JapónInstitute of Electrical and Electronics Engineers2016-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/60304Miyoshi, Takemasa; Lien, Guo-Yuan; Satoh, Shinsuke; Ushio, Tomoo; Bessho, Kotaro; et al.; “Big Data Assimilation” Toward Post-Petascale Severe Weather Prediction: An Overview and Progress; Institute of Electrical and Electronics Engineers; Proceedings Of The Ieee; 104; 11; 11-2016; 2155-21790018-9219CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1109/JPROC.2016.2602560info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/7576655/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:42:13Zoai:ri.conicet.gov.ar:11336/60304instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:42:14.249CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
“Big Data Assimilation” Toward Post-Petascale Severe Weather Prediction: An Overview and Progress |
title |
“Big Data Assimilation” Toward Post-Petascale Severe Weather Prediction: An Overview and Progress |
spellingShingle |
“Big Data Assimilation” Toward Post-Petascale Severe Weather Prediction: An Overview and Progress Miyoshi, Takemasa atmospheric mesaurements computer applications kalman filtering optimal control |
title_short |
“Big Data Assimilation” Toward Post-Petascale Severe Weather Prediction: An Overview and Progress |
title_full |
“Big Data Assimilation” Toward Post-Petascale Severe Weather Prediction: An Overview and Progress |
title_fullStr |
“Big Data Assimilation” Toward Post-Petascale Severe Weather Prediction: An Overview and Progress |
title_full_unstemmed |
“Big Data Assimilation” Toward Post-Petascale Severe Weather Prediction: An Overview and Progress |
title_sort |
“Big Data Assimilation” Toward Post-Petascale Severe Weather Prediction: An Overview and Progress |
dc.creator.none.fl_str_mv |
Miyoshi, Takemasa Lien, Guo-Yuan Satoh, Shinsuke Ushio, Tomoo Bessho, Kotaro Tomita, Hirofumi Nishizawa, Seiya Yoshida, Ryuji Adachi, Sachiho A. Liao, Jianwei Gerofi, Balazs Ishikawa, Yutaka Kunii, Masaru Ruiz, Juan Jose Maejima, Yasumitsu Otsuka, Shigenori Otsuka, Michiko Okamoto, Kozo Seko, Hiromu |
author |
Miyoshi, Takemasa |
author_facet |
Miyoshi, Takemasa Lien, Guo-Yuan Satoh, Shinsuke Ushio, Tomoo Bessho, Kotaro Tomita, Hirofumi Nishizawa, Seiya Yoshida, Ryuji Adachi, Sachiho A. Liao, Jianwei Gerofi, Balazs Ishikawa, Yutaka Kunii, Masaru Ruiz, Juan Jose Maejima, Yasumitsu Otsuka, Shigenori Otsuka, Michiko Okamoto, Kozo Seko, Hiromu |
author_role |
author |
author2 |
Lien, Guo-Yuan Satoh, Shinsuke Ushio, Tomoo Bessho, Kotaro Tomita, Hirofumi Nishizawa, Seiya Yoshida, Ryuji Adachi, Sachiho A. Liao, Jianwei Gerofi, Balazs Ishikawa, Yutaka Kunii, Masaru Ruiz, Juan Jose Maejima, Yasumitsu Otsuka, Shigenori Otsuka, Michiko Okamoto, Kozo Seko, Hiromu |
author2_role |
author author author author author author author author author author author author author author author author author author |
dc.subject.none.fl_str_mv |
atmospheric mesaurements computer applications kalman filtering optimal control |
topic |
atmospheric mesaurements computer applications kalman filtering optimal control |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Following the invention of the telegraph, electronic computer, and remote sensing, “big data” is bringing another revolution to weather prediction. As sensor and computer technologies advance, orders of magnitude bigger data are produced by new sensors and high-precision computer simulation or “big simulation.” Data assimilation (DA) is a key to numerical weather prediction (NWP) by integrating the real-world sensor data into simulation. However, the current DA and NWP systems are not designed to handle the “big data” from next-generation sensors and big simulation. Therefore, we propose “big data assimilation” (BDA) innovation to fully utilize the big data. Since October 2013, the Japan's BDA project has been exploring revolutionary NWP at 100-m mesh refreshed every 30 s, orders of magnitude finer and faster than the current typical NWP systems, by taking advantage of the fortunate combination of next-generation technologies: the 10-petaflops K computer, phased array weather radar, and geostationary satellite Himawari-8. So far, a BDA prototype system was developed and tested with real-world retrospective local rainstorm cases. This paper summarizes the activities and progress of the BDA project, and concludes with perspectives toward the post-petascale supercomputing era. Fil: Miyoshi, Takemasa. RIKEN Advanced Institute for Computational Science; Japón Fil: Lien, Guo-Yuan. RIKEN Advanced Institute for Computational Science; Japón Fil: Satoh, Shinsuke. National Institute of Information and Communications Technology; Japón Fil: Ushio, Tomoo. Osaka University; Japón Fil: Bessho, Kotaro. Meteorological Satellite Center; Japón Fil: Tomita, Hirofumi. RIKEN Advanced Institute for Computational Science; Japón Fil: Nishizawa, Seiya. RIKEN Advanced Institute for Computational Science; Japón Fil: Yoshida, Ryuji. RIKEN Advanced Institute for Computational Science; Japón Fil: Adachi, Sachiho A.. RIKEN Advanced Institute for Computational Science; Japón Fil: Liao, Jianwei. RIKEN Advanced Institute for Computational Science; Japón Fil: Gerofi, Balazs. RIKEN Advanced Institute for Computational Science; Japón Fil: Ishikawa, Yutaka. RIKEN Advanced Institute for Computational Science; Japón Fil: Kunii, Masaru. RIKEN Advanced Institute for Computational Science; Japón Fil: Ruiz, Juan Jose. RIKEN Advanced Institute for Computational Science; Japón. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Maejima, Yasumitsu. RIKEN Advanced Institute for Computational Science; Japón Fil: Otsuka, Shigenori. RIKEN Advanced Institute for Computational Science; Japón Fil: Otsuka, Michiko. RIKEN Advanced Institute for Computational Science; Japón Fil: Okamoto, Kozo. RIKEN Advanced Institute for Computational Science; Japón Fil: Seko, Hiromu. Meteorological Research Institute; Japón |
description |
Following the invention of the telegraph, electronic computer, and remote sensing, “big data” is bringing another revolution to weather prediction. As sensor and computer technologies advance, orders of magnitude bigger data are produced by new sensors and high-precision computer simulation or “big simulation.” Data assimilation (DA) is a key to numerical weather prediction (NWP) by integrating the real-world sensor data into simulation. However, the current DA and NWP systems are not designed to handle the “big data” from next-generation sensors and big simulation. Therefore, we propose “big data assimilation” (BDA) innovation to fully utilize the big data. Since October 2013, the Japan's BDA project has been exploring revolutionary NWP at 100-m mesh refreshed every 30 s, orders of magnitude finer and faster than the current typical NWP systems, by taking advantage of the fortunate combination of next-generation technologies: the 10-petaflops K computer, phased array weather radar, and geostationary satellite Himawari-8. So far, a BDA prototype system was developed and tested with real-world retrospective local rainstorm cases. This paper summarizes the activities and progress of the BDA project, and concludes with perspectives toward the post-petascale supercomputing era. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/60304 Miyoshi, Takemasa; Lien, Guo-Yuan; Satoh, Shinsuke; Ushio, Tomoo; Bessho, Kotaro; et al.; “Big Data Assimilation” Toward Post-Petascale Severe Weather Prediction: An Overview and Progress; Institute of Electrical and Electronics Engineers; Proceedings Of The Ieee; 104; 11; 11-2016; 2155-2179 0018-9219 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/60304 |
identifier_str_mv |
Miyoshi, Takemasa; Lien, Guo-Yuan; Satoh, Shinsuke; Ushio, Tomoo; Bessho, Kotaro; et al.; “Big Data Assimilation” Toward Post-Petascale Severe Weather Prediction: An Overview and Progress; Institute of Electrical and Electronics Engineers; Proceedings Of The Ieee; 104; 11; 11-2016; 2155-2179 0018-9219 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1109/JPROC.2016.2602560 info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/7576655/ |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers |
publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083531065786368 |
score |
13.22299 |