The Dependence on Frequency of Word Embedding Similarity Measures
- Autores
- Valentini, Francisco Tomás; Fernandez Slezak, Diego; Altszyler Lemcovich, Edgar Jaim
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Recent research has shown that static word embeddings can encode word frequency information. However, little has been studied about this phenomenon and its effects on downstream tasks. In the present work, we systematically study the association between frequency and semantic similarity in several static word embeddings. We find that Skip-gram, GloVe and FastText embeddings tend to produce higher semantic similarity between high-frequency words than between other frequency combinations. We show that the association between frequency and similarity also appears when words are randomly shuffled. This proves that the patterns found are not due to real semantic associations present in the texts, but are an artifact produced by the word embeddings. Finally, we provide an example of how word frequency can strongly impact the measurement of gender bias with embedding-based metrics. In particular, we carry out a controlled experiment that shows that biases can even change sign or reverse their order by manipulating word frequencies.
Fil: Valentini, Francisco Tomás. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina
Fil: Fernandez Slezak, Diego. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina
Fil: Altszyler Lemcovich, Edgar Jaim. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina - Materia
-
NATURAL LANGUAGE PROCESSING
WORD EMBEDDINGS
WORD FREQUENCY
WORD SIMILARITY - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/218015
Ver los metadatos del registro completo
id |
CONICETDig_a66c411598c2c02eb953fa346b0da816 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/218015 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
The Dependence on Frequency of Word Embedding Similarity MeasuresValentini, Francisco TomásFernandez Slezak, DiegoAltszyler Lemcovich, Edgar JaimNATURAL LANGUAGE PROCESSINGWORD EMBEDDINGSWORD FREQUENCYWORD SIMILARITYhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Recent research has shown that static word embeddings can encode word frequency information. However, little has been studied about this phenomenon and its effects on downstream tasks. In the present work, we systematically study the association between frequency and semantic similarity in several static word embeddings. We find that Skip-gram, GloVe and FastText embeddings tend to produce higher semantic similarity between high-frequency words than between other frequency combinations. We show that the association between frequency and similarity also appears when words are randomly shuffled. This proves that the patterns found are not due to real semantic associations present in the texts, but are an artifact produced by the word embeddings. Finally, we provide an example of how word frequency can strongly impact the measurement of gender bias with embedding-based metrics. In particular, we carry out a controlled experiment that shows that biases can even change sign or reverse their order by manipulating word frequencies.Fil: Valentini, Francisco Tomás. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; ArgentinaFil: Fernandez Slezak, Diego. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; ArgentinaFil: Altszyler Lemcovich, Edgar Jaim. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; ArgentinaCornell University2022-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/218015Valentini, Francisco Tomás; Fernandez Slezak, Diego; Altszyler Lemcovich, Edgar Jaim; The Dependence on Frequency of Word Embedding Similarity Measures; Cornell University; ArXiv.org; 11-2022; 1-102331-8422CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.48550/arXiv.2211.08203info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/2211.08203info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:57:22Zoai:ri.conicet.gov.ar:11336/218015instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:57:22.565CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
The Dependence on Frequency of Word Embedding Similarity Measures |
title |
The Dependence on Frequency of Word Embedding Similarity Measures |
spellingShingle |
The Dependence on Frequency of Word Embedding Similarity Measures Valentini, Francisco Tomás NATURAL LANGUAGE PROCESSING WORD EMBEDDINGS WORD FREQUENCY WORD SIMILARITY |
title_short |
The Dependence on Frequency of Word Embedding Similarity Measures |
title_full |
The Dependence on Frequency of Word Embedding Similarity Measures |
title_fullStr |
The Dependence on Frequency of Word Embedding Similarity Measures |
title_full_unstemmed |
The Dependence on Frequency of Word Embedding Similarity Measures |
title_sort |
The Dependence on Frequency of Word Embedding Similarity Measures |
dc.creator.none.fl_str_mv |
Valentini, Francisco Tomás Fernandez Slezak, Diego Altszyler Lemcovich, Edgar Jaim |
author |
Valentini, Francisco Tomás |
author_facet |
Valentini, Francisco Tomás Fernandez Slezak, Diego Altszyler Lemcovich, Edgar Jaim |
author_role |
author |
author2 |
Fernandez Slezak, Diego Altszyler Lemcovich, Edgar Jaim |
author2_role |
author author |
dc.subject.none.fl_str_mv |
NATURAL LANGUAGE PROCESSING WORD EMBEDDINGS WORD FREQUENCY WORD SIMILARITY |
topic |
NATURAL LANGUAGE PROCESSING WORD EMBEDDINGS WORD FREQUENCY WORD SIMILARITY |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Recent research has shown that static word embeddings can encode word frequency information. However, little has been studied about this phenomenon and its effects on downstream tasks. In the present work, we systematically study the association between frequency and semantic similarity in several static word embeddings. We find that Skip-gram, GloVe and FastText embeddings tend to produce higher semantic similarity between high-frequency words than between other frequency combinations. We show that the association between frequency and similarity also appears when words are randomly shuffled. This proves that the patterns found are not due to real semantic associations present in the texts, but are an artifact produced by the word embeddings. Finally, we provide an example of how word frequency can strongly impact the measurement of gender bias with embedding-based metrics. In particular, we carry out a controlled experiment that shows that biases can even change sign or reverse their order by manipulating word frequencies. Fil: Valentini, Francisco Tomás. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina Fil: Fernandez Slezak, Diego. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina Fil: Altszyler Lemcovich, Edgar Jaim. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina |
description |
Recent research has shown that static word embeddings can encode word frequency information. However, little has been studied about this phenomenon and its effects on downstream tasks. In the present work, we systematically study the association between frequency and semantic similarity in several static word embeddings. We find that Skip-gram, GloVe and FastText embeddings tend to produce higher semantic similarity between high-frequency words than between other frequency combinations. We show that the association between frequency and similarity also appears when words are randomly shuffled. This proves that the patterns found are not due to real semantic associations present in the texts, but are an artifact produced by the word embeddings. Finally, we provide an example of how word frequency can strongly impact the measurement of gender bias with embedding-based metrics. In particular, we carry out a controlled experiment that shows that biases can even change sign or reverse their order by manipulating word frequencies. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/218015 Valentini, Francisco Tomás; Fernandez Slezak, Diego; Altszyler Lemcovich, Edgar Jaim; The Dependence on Frequency of Word Embedding Similarity Measures; Cornell University; ArXiv.org; 11-2022; 1-10 2331-8422 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/218015 |
identifier_str_mv |
Valentini, Francisco Tomás; Fernandez Slezak, Diego; Altszyler Lemcovich, Edgar Jaim; The Dependence on Frequency of Word Embedding Similarity Measures; Cornell University; ArXiv.org; 11-2022; 1-10 2331-8422 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.48550/arXiv.2211.08203 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/2211.08203 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Cornell University |
publisher.none.fl_str_mv |
Cornell University |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269459248578560 |
score |
13.13397 |