The successive dimension, without elegance
- Autores
- Menni, Matías
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Experience shows that the poset of levels (or dimensions) of the topos of presheaves on some elegant Reedy categories may be equipped with a monotone increasing ‘successor’ function which, as the case of simplicial sets illustrates, is different from Lawvere’s Aufhebung in general. We prove that a similar result holds for the topos of presheaves on a small category with split-epi/mono factorizations; a typical feature of categories that are Reedy elegant, or skeletal, or graphic (von Neumann-)regular, but more general. In fact, we show that the more general ‘successor’ may be described as a function on the poset of full subcategories of the site that are closed under subobjects.
Fil: Menni, Matías. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Universidad Nacional de La Plata. Facultad de Informática. Laboratorio de Investigación y Formación en Informática Avanzada; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina - Materia
-
Dimension Theory
Topos Theory - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/238395
Ver los metadatos del registro completo
| id |
CONICETDig_133d39c260056d4c8ef53956d48eaa42 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/238395 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
The successive dimension, without eleganceMenni, MatíasDimension TheoryTopos Theoryhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Experience shows that the poset of levels (or dimensions) of the topos of presheaves on some elegant Reedy categories may be equipped with a monotone increasing ‘successor’ function which, as the case of simplicial sets illustrates, is different from Lawvere’s Aufhebung in general. We prove that a similar result holds for the topos of presheaves on a small category with split-epi/mono factorizations; a typical feature of categories that are Reedy elegant, or skeletal, or graphic (von Neumann-)regular, but more general. In fact, we show that the more general ‘successor’ may be described as a function on the poset of full subcategories of the site that are closed under subobjects.Fil: Menni, Matías. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Universidad Nacional de La Plata. Facultad de Informática. Laboratorio de Investigación y Formación en Informática Avanzada; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaAmerican Mathematical Society2024-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/238395Menni, Matías; The successive dimension, without elegance; American Mathematical Society; Proceedings of the American Mathematical Society; 152; 3; 1-2024; 1337-13540002-99391088-6826CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1090/proc/16638info:eu-repo/semantics/altIdentifier/url/https://www.ams.org/journals/proc/2024-152-03/S0002-9939-2024-16638-7/home.htmlinfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/2308.04584v1info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-05T09:48:22Zoai:ri.conicet.gov.ar:11336/238395instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-05 09:48:23.248CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
The successive dimension, without elegance |
| title |
The successive dimension, without elegance |
| spellingShingle |
The successive dimension, without elegance Menni, Matías Dimension Theory Topos Theory |
| title_short |
The successive dimension, without elegance |
| title_full |
The successive dimension, without elegance |
| title_fullStr |
The successive dimension, without elegance |
| title_full_unstemmed |
The successive dimension, without elegance |
| title_sort |
The successive dimension, without elegance |
| dc.creator.none.fl_str_mv |
Menni, Matías |
| author |
Menni, Matías |
| author_facet |
Menni, Matías |
| author_role |
author |
| dc.subject.none.fl_str_mv |
Dimension Theory Topos Theory |
| topic |
Dimension Theory Topos Theory |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
Experience shows that the poset of levels (or dimensions) of the topos of presheaves on some elegant Reedy categories may be equipped with a monotone increasing ‘successor’ function which, as the case of simplicial sets illustrates, is different from Lawvere’s Aufhebung in general. We prove that a similar result holds for the topos of presheaves on a small category with split-epi/mono factorizations; a typical feature of categories that are Reedy elegant, or skeletal, or graphic (von Neumann-)regular, but more general. In fact, we show that the more general ‘successor’ may be described as a function on the poset of full subcategories of the site that are closed under subobjects. Fil: Menni, Matías. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Universidad Nacional de La Plata. Facultad de Informática. Laboratorio de Investigación y Formación en Informática Avanzada; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina |
| description |
Experience shows that the poset of levels (or dimensions) of the topos of presheaves on some elegant Reedy categories may be equipped with a monotone increasing ‘successor’ function which, as the case of simplicial sets illustrates, is different from Lawvere’s Aufhebung in general. We prove that a similar result holds for the topos of presheaves on a small category with split-epi/mono factorizations; a typical feature of categories that are Reedy elegant, or skeletal, or graphic (von Neumann-)regular, but more general. In fact, we show that the more general ‘successor’ may be described as a function on the poset of full subcategories of the site that are closed under subobjects. |
| publishDate |
2024 |
| dc.date.none.fl_str_mv |
2024-01 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/238395 Menni, Matías; The successive dimension, without elegance; American Mathematical Society; Proceedings of the American Mathematical Society; 152; 3; 1-2024; 1337-1354 0002-9939 1088-6826 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/238395 |
| identifier_str_mv |
Menni, Matías; The successive dimension, without elegance; American Mathematical Society; Proceedings of the American Mathematical Society; 152; 3; 1-2024; 1337-1354 0002-9939 1088-6826 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1090/proc/16638 info:eu-repo/semantics/altIdentifier/url/https://www.ams.org/journals/proc/2024-152-03/S0002-9939-2024-16638-7/home.html info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/2308.04584v1 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
American Mathematical Society |
| publisher.none.fl_str_mv |
American Mathematical Society |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1847977163842650112 |
| score |
13.087074 |