Análisis y simulación del modelo térmico y viscoso del proceso de Melt Spinning

Autores
Barone, Marcelo Lucas; Barceló, Francisco; Useche, Jairo; Larreteguy, Axel Eduardo; Pagnola, Marcelo Rubén
Año de publicación
2018
Idioma
español castellano
Tipo de recurso
artículo
Estado
versión publicada
Descripción
El proceso de Melt Spinning es utilizado para la fabricación de cintas delgadas de materiales amorfos. El material se inyecta a través de una boquilla en estado líquido y se solidifica al entrar en contacto con una rueda rotante. En este trabajo se pretende encontrar mediante simulación computacional realizada con OpenFOAM® un perfil térmico del material desde su eyección por la boquilla hasta la conformación de la cinta propiamente dicha. Se utilizaun modelo de dos fases del tipo Volume of Fluids (VOF). A pesar de que ninguno de los dos fluidos (metal fundido y aire) puede considerarse compresible para las presiones de trabajo se utiliza un método de resolución de naturaleza compresible. Esto permite representar los cambios de densidad en el aire por cambios de temperatura y definir un modelo termofísico para la aleación. Para esto, se considera una aleación de conductividad térmica, calor específico y densidad constantes. El cambio de fase es representado por un modelo que relaciona viscosidad () con temperatura () en el cual la viscosidad crece varios órdenes de magnitud cuando el material pasa por debajo de la temperatura de cristalización. Entre las opciones de modelos viscosos que ofrece OpenFOAM®, se selecciona un modelo polinómico cuyos coeficientes fueron determinados mediante rutinas OCTAVE hasta lograr una curva dea juste [1] para la viscosidad dentro del rango de temperaturas de 600 a 1700ºC.
The Melt Spinning process is used for thin ribbons manufacture of amorphous materials and nanocrystalline. The material in liquid state is injected through a nozzle and solidifies upon contact with a copper rotating wheel. In this work, we intend to find, by means of a computer simulation with OpenFOAM®, a thermal profile of the material from its ejection through the nozzle to the conformation of the ribbon itself. A two-phase model of the Volume of Fluids (VOF) type is used. Although neither of the two fluids (molten metal and air) can be considered compressible for working pressures, a resolution method of a compressible nature is used. This allows to represent the density changes in the air due to temperature changes, and to define a thermo-physical model for the specific alloy. For this, we considered an alloy of constant thermal conductivity, specific heat and density. The phase change is represented by a model that relates viscosity () with temperature () in which the viscosity increases several orders of magnitude when the material passes below the crystallization temperature. Among the options of viscous models offered by OpenFOAM®, we select a polynomial model whose coefficients were determined by OCTAVE routines until achieving a fitting curve [1] for the viscosity within the temperature range of 600 to 1700ºC.
Fil: Barone, Marcelo Lucas. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long". Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long"; Argentina. Universidad Tecnológica Nacional. Facultad Regional Haedo; Argentina
Fil: Barceló, Francisco. Universidad Argentina de la Empresa; Argentina
Fil: Useche, Jairo. Universidad Tecnológica de Bolívar; Colombia
Fil: Larreteguy, Axel Eduardo. Universidad Argentina de la Empresa; Argentina
Fil: Pagnola, Marcelo Rubén. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long". Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long"; Argentina
Materia
Melt Spinning
Open Foam
Density Based Solver
Cfd
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/47259

id CONICETDig_11888b616c20015896eab9acabb097aa
oai_identifier_str oai:ri.conicet.gov.ar:11336/47259
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Análisis y simulación del modelo térmico y viscoso del proceso de Melt SpinningAnalysis and simulation of thermal / viscose model for Melt Spinning processBarone, Marcelo LucasBarceló, FranciscoUseche, JairoLarreteguy, Axel EduardoPagnola, Marcelo RubénMelt SpinningOpen FoamDensity Based SolverCfdhttps://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2El proceso de Melt Spinning es utilizado para la fabricación de cintas delgadas de materiales amorfos. El material se inyecta a través de una boquilla en estado líquido y se solidifica al entrar en contacto con una rueda rotante. En este trabajo se pretende encontrar mediante simulación computacional realizada con OpenFOAM® un perfil térmico del material desde su eyección por la boquilla hasta la conformación de la cinta propiamente dicha. Se utilizaun modelo de dos fases del tipo Volume of Fluids (VOF). A pesar de que ninguno de los dos fluidos (metal fundido y aire) puede considerarse compresible para las presiones de trabajo se utiliza un método de resolución de naturaleza compresible. Esto permite representar los cambios de densidad en el aire por cambios de temperatura y definir un modelo termofísico para la aleación. Para esto, se considera una aleación de conductividad térmica, calor específico y densidad constantes. El cambio de fase es representado por un modelo que relaciona viscosidad () con temperatura () en el cual la viscosidad crece varios órdenes de magnitud cuando el material pasa por debajo de la temperatura de cristalización. Entre las opciones de modelos viscosos que ofrece OpenFOAM®, se selecciona un modelo polinómico cuyos coeficientes fueron determinados mediante rutinas OCTAVE hasta lograr una curva dea juste [1] para la viscosidad dentro del rango de temperaturas de 600 a 1700ºC.The Melt Spinning process is used for thin ribbons manufacture of amorphous materials and nanocrystalline. The material in liquid state is injected through a nozzle and solidifies upon contact with a copper rotating wheel. In this work, we intend to find, by means of a computer simulation with OpenFOAM®, a thermal profile of the material from its ejection through the nozzle to the conformation of the ribbon itself. A two-phase model of the Volume of Fluids (VOF) type is used. Although neither of the two fluids (molten metal and air) can be considered compressible for working pressures, a resolution method of a compressible nature is used. This allows to represent the density changes in the air due to temperature changes, and to define a thermo-physical model for the specific alloy. For this, we considered an alloy of constant thermal conductivity, specific heat and density. The phase change is represented by a model that relates viscosity () with temperature () in which the viscosity increases several orders of magnitude when the material passes below the crystallization temperature. Among the options of viscous models offered by OpenFOAM®, we select a polynomial model whose coefficients were determined by OCTAVE routines until achieving a fitting curve [1] for the viscosity within the temperature range of 600 to 1700ºC.Fil: Barone, Marcelo Lucas. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long". Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long"; Argentina. Universidad Tecnológica Nacional. Facultad Regional Haedo; ArgentinaFil: Barceló, Francisco. Universidad Argentina de la Empresa; ArgentinaFil: Useche, Jairo. Universidad Tecnológica de Bolívar; ColombiaFil: Larreteguy, Axel Eduardo. Universidad Argentina de la Empresa; ArgentinaFil: Pagnola, Marcelo Rubén. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long". Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long"; ArgentinaUniversidad Industrial de Santander2018-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/47259Barone, Marcelo Lucas; Barceló, Francisco; Useche, Jairo; Larreteguy, Axel Eduardo; Pagnola, Marcelo Rubén; Análisis y simulación del modelo térmico y viscoso del proceso de Melt Spinning; Universidad Industrial de Santander; Revista UIS Ingenierías; 17; 1; 2-2018; 185-1902145-8456CONICET DigitalCONICETspainfo:eu-repo/semantics/altIdentifier/url/http://revistas.uis.edu.co/index.php/revistauisingenierias/article/view/7636info:eu-repo/semantics/altIdentifier/doi/10.18273/revuin.v17n1-2018017info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-17T10:40:33Zoai:ri.conicet.gov.ar:11336/47259instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-17 10:40:33.525CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Análisis y simulación del modelo térmico y viscoso del proceso de Melt Spinning
Analysis and simulation of thermal / viscose model for Melt Spinning process
title Análisis y simulación del modelo térmico y viscoso del proceso de Melt Spinning
spellingShingle Análisis y simulación del modelo térmico y viscoso del proceso de Melt Spinning
Barone, Marcelo Lucas
Melt Spinning
Open Foam
Density Based Solver
Cfd
title_short Análisis y simulación del modelo térmico y viscoso del proceso de Melt Spinning
title_full Análisis y simulación del modelo térmico y viscoso del proceso de Melt Spinning
title_fullStr Análisis y simulación del modelo térmico y viscoso del proceso de Melt Spinning
title_full_unstemmed Análisis y simulación del modelo térmico y viscoso del proceso de Melt Spinning
title_sort Análisis y simulación del modelo térmico y viscoso del proceso de Melt Spinning
dc.creator.none.fl_str_mv Barone, Marcelo Lucas
Barceló, Francisco
Useche, Jairo
Larreteguy, Axel Eduardo
Pagnola, Marcelo Rubén
author Barone, Marcelo Lucas
author_facet Barone, Marcelo Lucas
Barceló, Francisco
Useche, Jairo
Larreteguy, Axel Eduardo
Pagnola, Marcelo Rubén
author_role author
author2 Barceló, Francisco
Useche, Jairo
Larreteguy, Axel Eduardo
Pagnola, Marcelo Rubén
author2_role author
author
author
author
dc.subject.none.fl_str_mv Melt Spinning
Open Foam
Density Based Solver
Cfd
topic Melt Spinning
Open Foam
Density Based Solver
Cfd
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.5
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv El proceso de Melt Spinning es utilizado para la fabricación de cintas delgadas de materiales amorfos. El material se inyecta a través de una boquilla en estado líquido y se solidifica al entrar en contacto con una rueda rotante. En este trabajo se pretende encontrar mediante simulación computacional realizada con OpenFOAM® un perfil térmico del material desde su eyección por la boquilla hasta la conformación de la cinta propiamente dicha. Se utilizaun modelo de dos fases del tipo Volume of Fluids (VOF). A pesar de que ninguno de los dos fluidos (metal fundido y aire) puede considerarse compresible para las presiones de trabajo se utiliza un método de resolución de naturaleza compresible. Esto permite representar los cambios de densidad en el aire por cambios de temperatura y definir un modelo termofísico para la aleación. Para esto, se considera una aleación de conductividad térmica, calor específico y densidad constantes. El cambio de fase es representado por un modelo que relaciona viscosidad () con temperatura () en el cual la viscosidad crece varios órdenes de magnitud cuando el material pasa por debajo de la temperatura de cristalización. Entre las opciones de modelos viscosos que ofrece OpenFOAM®, se selecciona un modelo polinómico cuyos coeficientes fueron determinados mediante rutinas OCTAVE hasta lograr una curva dea juste [1] para la viscosidad dentro del rango de temperaturas de 600 a 1700ºC.
The Melt Spinning process is used for thin ribbons manufacture of amorphous materials and nanocrystalline. The material in liquid state is injected through a nozzle and solidifies upon contact with a copper rotating wheel. In this work, we intend to find, by means of a computer simulation with OpenFOAM®, a thermal profile of the material from its ejection through the nozzle to the conformation of the ribbon itself. A two-phase model of the Volume of Fluids (VOF) type is used. Although neither of the two fluids (molten metal and air) can be considered compressible for working pressures, a resolution method of a compressible nature is used. This allows to represent the density changes in the air due to temperature changes, and to define a thermo-physical model for the specific alloy. For this, we considered an alloy of constant thermal conductivity, specific heat and density. The phase change is represented by a model that relates viscosity () with temperature () in which the viscosity increases several orders of magnitude when the material passes below the crystallization temperature. Among the options of viscous models offered by OpenFOAM®, we select a polynomial model whose coefficients were determined by OCTAVE routines until achieving a fitting curve [1] for the viscosity within the temperature range of 600 to 1700ºC.
Fil: Barone, Marcelo Lucas. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long". Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long"; Argentina. Universidad Tecnológica Nacional. Facultad Regional Haedo; Argentina
Fil: Barceló, Francisco. Universidad Argentina de la Empresa; Argentina
Fil: Useche, Jairo. Universidad Tecnológica de Bolívar; Colombia
Fil: Larreteguy, Axel Eduardo. Universidad Argentina de la Empresa; Argentina
Fil: Pagnola, Marcelo Rubén. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long". Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long"; Argentina
description El proceso de Melt Spinning es utilizado para la fabricación de cintas delgadas de materiales amorfos. El material se inyecta a través de una boquilla en estado líquido y se solidifica al entrar en contacto con una rueda rotante. En este trabajo se pretende encontrar mediante simulación computacional realizada con OpenFOAM® un perfil térmico del material desde su eyección por la boquilla hasta la conformación de la cinta propiamente dicha. Se utilizaun modelo de dos fases del tipo Volume of Fluids (VOF). A pesar de que ninguno de los dos fluidos (metal fundido y aire) puede considerarse compresible para las presiones de trabajo se utiliza un método de resolución de naturaleza compresible. Esto permite representar los cambios de densidad en el aire por cambios de temperatura y definir un modelo termofísico para la aleación. Para esto, se considera una aleación de conductividad térmica, calor específico y densidad constantes. El cambio de fase es representado por un modelo que relaciona viscosidad () con temperatura () en el cual la viscosidad crece varios órdenes de magnitud cuando el material pasa por debajo de la temperatura de cristalización. Entre las opciones de modelos viscosos que ofrece OpenFOAM®, se selecciona un modelo polinómico cuyos coeficientes fueron determinados mediante rutinas OCTAVE hasta lograr una curva dea juste [1] para la viscosidad dentro del rango de temperaturas de 600 a 1700ºC.
publishDate 2018
dc.date.none.fl_str_mv 2018-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/47259
Barone, Marcelo Lucas; Barceló, Francisco; Useche, Jairo; Larreteguy, Axel Eduardo; Pagnola, Marcelo Rubén; Análisis y simulación del modelo térmico y viscoso del proceso de Melt Spinning; Universidad Industrial de Santander; Revista UIS Ingenierías; 17; 1; 2-2018; 185-190
2145-8456
CONICET Digital
CONICET
url http://hdl.handle.net/11336/47259
identifier_str_mv Barone, Marcelo Lucas; Barceló, Francisco; Useche, Jairo; Larreteguy, Axel Eduardo; Pagnola, Marcelo Rubén; Análisis y simulación del modelo térmico y viscoso del proceso de Melt Spinning; Universidad Industrial de Santander; Revista UIS Ingenierías; 17; 1; 2-2018; 185-190
2145-8456
CONICET Digital
CONICET
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://revistas.uis.edu.co/index.php/revistauisingenierias/article/view/7636
info:eu-repo/semantics/altIdentifier/doi/10.18273/revuin.v17n1-2018017
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Universidad Industrial de Santander
publisher.none.fl_str_mv Universidad Industrial de Santander
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1843605830356697088
score 13.000565