Modeling Melt Spinning with Stress Induced Crystallization at High Take Up Velocities: Numerical Results for the PET Melt
- Autores
- Ottone, Mariel Lorena; Peirotti, Marta Beatriz; Deiber, Julio Alcides
- Año de publicación
- 2002
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The purpose of this work is to present a 2-D thermo-rheological model for high take up velocities that can predict numerically in the filament domain, the axial velocity profile together with the radial and axial resolutions of stresses, temperature and degree of crystallization. The rheology of the filament is described through a constitutive equation that results from the combination of the Phan-Thien and Tanner viscoelastic model for the amorphous phase and the kinetic model of the rigid dumbbell for the crystalline phase immersed in the melt. The model is thus able to predict the thermal and mechanical coupling between both phases through the degree of transformation (relative degree of crystallization) when the balances of mass, momentum and energy are invoked. The effects of stress induced crystallization, viscoelasticity, friction of cooling air, filament inertia, gravity and surface tension are all considered together with the temperature dependency of polymer and cooling air thermo-physical properties. The rate of crystallization is evaluated through the nonisothermal Avrami-Nakamura equation. Also, the relaxation times of both phases are function of temperature and degree of transformation. Numerical predictions of the model compare well with experimental data reported in the literature for a PET melt at a take up velocity of 5490 m/min. Also, consistently with experimental observations reported in the literature, the “skin-core” structure is predicted. It is relevant to indicate that the model analyzed here can be evaluated from low to high take up velocities, and when the degree of crystallization becomes negligible, the one-phase model is recovered continuously.
Fil: Ottone, Mariel Lorena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Peirotti, Marta Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Deiber, Julio Alcides. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina - Materia
-
MELT SPINNING
STRESS INDUCED CRYSTALLIZATION
FILAMENT NECKING
POLYETHYLENE THEREPHTALATE FILAMENT
HIGH TAKE UP VELOCITY - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/30066
Ver los metadatos del registro completo
id |
CONICETDig_0faa23924e7fe71efad1d83dd83ac925 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/30066 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Modeling Melt Spinning with Stress Induced Crystallization at High Take Up Velocities: Numerical Results for the PET MeltOttone, Mariel LorenaPeirotti, Marta BeatrizDeiber, Julio AlcidesMELT SPINNINGSTRESS INDUCED CRYSTALLIZATIONFILAMENT NECKINGPOLYETHYLENE THEREPHTALATE FILAMENTHIGH TAKE UP VELOCITYhttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2The purpose of this work is to present a 2-D thermo-rheological model for high take up velocities that can predict numerically in the filament domain, the axial velocity profile together with the radial and axial resolutions of stresses, temperature and degree of crystallization. The rheology of the filament is described through a constitutive equation that results from the combination of the Phan-Thien and Tanner viscoelastic model for the amorphous phase and the kinetic model of the rigid dumbbell for the crystalline phase immersed in the melt. The model is thus able to predict the thermal and mechanical coupling between both phases through the degree of transformation (relative degree of crystallization) when the balances of mass, momentum and energy are invoked. The effects of stress induced crystallization, viscoelasticity, friction of cooling air, filament inertia, gravity and surface tension are all considered together with the temperature dependency of polymer and cooling air thermo-physical properties. The rate of crystallization is evaluated through the nonisothermal Avrami-Nakamura equation. Also, the relaxation times of both phases are function of temperature and degree of transformation. Numerical predictions of the model compare well with experimental data reported in the literature for a PET melt at a take up velocity of 5490 m/min. Also, consistently with experimental observations reported in the literature, the “skin-core” structure is predicted. It is relevant to indicate that the model analyzed here can be evaluated from low to high take up velocities, and when the degree of crystallization becomes negligible, the one-phase model is recovered continuously.Fil: Ottone, Mariel Lorena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Peirotti, Marta Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Deiber, Julio Alcides. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaAsociación Argentina de Mecánica Computacional2002-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/30066Ottone, Mariel Lorena; Peirotti, Marta Beatriz; Deiber, Julio Alcides; Modeling Melt Spinning with Stress Induced Crystallization at High Take Up Velocities: Numerical Results for the PET Melt; Asociación Argentina de Mecánica Computacional; Mecánica Computacional; XXII; 11-2002; 67-851666-6070CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.cimec.org.ar/ojs/index.php/mc/article/view/878/836info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:09:41Zoai:ri.conicet.gov.ar:11336/30066instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:09:42.119CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Modeling Melt Spinning with Stress Induced Crystallization at High Take Up Velocities: Numerical Results for the PET Melt |
title |
Modeling Melt Spinning with Stress Induced Crystallization at High Take Up Velocities: Numerical Results for the PET Melt |
spellingShingle |
Modeling Melt Spinning with Stress Induced Crystallization at High Take Up Velocities: Numerical Results for the PET Melt Ottone, Mariel Lorena MELT SPINNING STRESS INDUCED CRYSTALLIZATION FILAMENT NECKING POLYETHYLENE THEREPHTALATE FILAMENT HIGH TAKE UP VELOCITY |
title_short |
Modeling Melt Spinning with Stress Induced Crystallization at High Take Up Velocities: Numerical Results for the PET Melt |
title_full |
Modeling Melt Spinning with Stress Induced Crystallization at High Take Up Velocities: Numerical Results for the PET Melt |
title_fullStr |
Modeling Melt Spinning with Stress Induced Crystallization at High Take Up Velocities: Numerical Results for the PET Melt |
title_full_unstemmed |
Modeling Melt Spinning with Stress Induced Crystallization at High Take Up Velocities: Numerical Results for the PET Melt |
title_sort |
Modeling Melt Spinning with Stress Induced Crystallization at High Take Up Velocities: Numerical Results for the PET Melt |
dc.creator.none.fl_str_mv |
Ottone, Mariel Lorena Peirotti, Marta Beatriz Deiber, Julio Alcides |
author |
Ottone, Mariel Lorena |
author_facet |
Ottone, Mariel Lorena Peirotti, Marta Beatriz Deiber, Julio Alcides |
author_role |
author |
author2 |
Peirotti, Marta Beatriz Deiber, Julio Alcides |
author2_role |
author author |
dc.subject.none.fl_str_mv |
MELT SPINNING STRESS INDUCED CRYSTALLIZATION FILAMENT NECKING POLYETHYLENE THEREPHTALATE FILAMENT HIGH TAKE UP VELOCITY |
topic |
MELT SPINNING STRESS INDUCED CRYSTALLIZATION FILAMENT NECKING POLYETHYLENE THEREPHTALATE FILAMENT HIGH TAKE UP VELOCITY |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.4 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
The purpose of this work is to present a 2-D thermo-rheological model for high take up velocities that can predict numerically in the filament domain, the axial velocity profile together with the radial and axial resolutions of stresses, temperature and degree of crystallization. The rheology of the filament is described through a constitutive equation that results from the combination of the Phan-Thien and Tanner viscoelastic model for the amorphous phase and the kinetic model of the rigid dumbbell for the crystalline phase immersed in the melt. The model is thus able to predict the thermal and mechanical coupling between both phases through the degree of transformation (relative degree of crystallization) when the balances of mass, momentum and energy are invoked. The effects of stress induced crystallization, viscoelasticity, friction of cooling air, filament inertia, gravity and surface tension are all considered together with the temperature dependency of polymer and cooling air thermo-physical properties. The rate of crystallization is evaluated through the nonisothermal Avrami-Nakamura equation. Also, the relaxation times of both phases are function of temperature and degree of transformation. Numerical predictions of the model compare well with experimental data reported in the literature for a PET melt at a take up velocity of 5490 m/min. Also, consistently with experimental observations reported in the literature, the “skin-core” structure is predicted. It is relevant to indicate that the model analyzed here can be evaluated from low to high take up velocities, and when the degree of crystallization becomes negligible, the one-phase model is recovered continuously. Fil: Ottone, Mariel Lorena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina Fil: Peirotti, Marta Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina Fil: Deiber, Julio Alcides. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina |
description |
The purpose of this work is to present a 2-D thermo-rheological model for high take up velocities that can predict numerically in the filament domain, the axial velocity profile together with the radial and axial resolutions of stresses, temperature and degree of crystallization. The rheology of the filament is described through a constitutive equation that results from the combination of the Phan-Thien and Tanner viscoelastic model for the amorphous phase and the kinetic model of the rigid dumbbell for the crystalline phase immersed in the melt. The model is thus able to predict the thermal and mechanical coupling between both phases through the degree of transformation (relative degree of crystallization) when the balances of mass, momentum and energy are invoked. The effects of stress induced crystallization, viscoelasticity, friction of cooling air, filament inertia, gravity and surface tension are all considered together with the temperature dependency of polymer and cooling air thermo-physical properties. The rate of crystallization is evaluated through the nonisothermal Avrami-Nakamura equation. Also, the relaxation times of both phases are function of temperature and degree of transformation. Numerical predictions of the model compare well with experimental data reported in the literature for a PET melt at a take up velocity of 5490 m/min. Also, consistently with experimental observations reported in the literature, the “skin-core” structure is predicted. It is relevant to indicate that the model analyzed here can be evaluated from low to high take up velocities, and when the degree of crystallization becomes negligible, the one-phase model is recovered continuously. |
publishDate |
2002 |
dc.date.none.fl_str_mv |
2002-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/30066 Ottone, Mariel Lorena; Peirotti, Marta Beatriz; Deiber, Julio Alcides; Modeling Melt Spinning with Stress Induced Crystallization at High Take Up Velocities: Numerical Results for the PET Melt; Asociación Argentina de Mecánica Computacional; Mecánica Computacional; XXII; 11-2002; 67-85 1666-6070 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/30066 |
identifier_str_mv |
Ottone, Mariel Lorena; Peirotti, Marta Beatriz; Deiber, Julio Alcides; Modeling Melt Spinning with Stress Induced Crystallization at High Take Up Velocities: Numerical Results for the PET Melt; Asociación Argentina de Mecánica Computacional; Mecánica Computacional; XXII; 11-2002; 67-85 1666-6070 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.cimec.org.ar/ojs/index.php/mc/article/view/878/836 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Asociación Argentina de Mecánica Computacional |
publisher.none.fl_str_mv |
Asociación Argentina de Mecánica Computacional |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980479843696640 |
score |
12.993085 |