Model subspaces techniques to study Fourier expansions in L^2 spaces associated to singular measures
- Autores
- Antezana, Jorge Abel; García, María Guadalupe
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Let μ be a probability measure on T that is singular with respect to the Haar measure. In this paper we study Fourier expansions in L2(T,μ) using techniques from the theory of model subspaces of the Hardy space. Since the sequence of monomials {zn}n∈N is effective in L2(T,μ), it has a Parseval frame associated via the Kaczmarz algorithm. Our first main goal is to identify the aforementioned frame with boundary values of the frame Pφ(zn) for the model subspace H(φ)=H2⊖φH2, where Pφ is the orthogonal projection from the Hardy space H2 onto H(φ). The study of Fourier expansions in L2(T,μ) also leads to consider positive kernels in the Hardy space. Our second main goal is to study the set of measures μ which reproduce a kernel contained in a model subspace. We completely characterize this set when the kernel is the reproducing kernel of a model subspace, and we study the consequences of this characterization.
Fil: Antezana, Jorge Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de la Plata. Facultad de Cs.exactas. Centro de Matematica de la Plata.; Argentina
Fil: García, María Guadalupe. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de la Plata. Facultad de Cs.exactas. Centro de Matematica de la Plata.; Argentina - Materia
-
FOURIER EXPANSIONS
KACZMARZ ALGORITHM
MODEL SUBSPACES
PARSEVAL FRAMES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/119698
Ver los metadatos del registro completo
id |
CONICETDig_116d783e52b28aca1d016e85454bb399 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/119698 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Model subspaces techniques to study Fourier expansions in L^2 spaces associated to singular measuresAntezana, Jorge AbelGarcía, María GuadalupeFOURIER EXPANSIONSKACZMARZ ALGORITHMMODEL SUBSPACESPARSEVAL FRAMEShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let μ be a probability measure on T that is singular with respect to the Haar measure. In this paper we study Fourier expansions in L2(T,μ) using techniques from the theory of model subspaces of the Hardy space. Since the sequence of monomials {zn}n∈N is effective in L2(T,μ), it has a Parseval frame associated via the Kaczmarz algorithm. Our first main goal is to identify the aforementioned frame with boundary values of the frame Pφ(zn) for the model subspace H(φ)=H2⊖φH2, where Pφ is the orthogonal projection from the Hardy space H2 onto H(φ). The study of Fourier expansions in L2(T,μ) also leads to consider positive kernels in the Hardy space. Our second main goal is to study the set of measures μ which reproduce a kernel contained in a model subspace. We completely characterize this set when the kernel is the reproducing kernel of a model subspace, and we study the consequences of this characterization.Fil: Antezana, Jorge Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de la Plata. Facultad de Cs.exactas. Centro de Matematica de la Plata.; ArgentinaFil: García, María Guadalupe. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de la Plata. Facultad de Cs.exactas. Centro de Matematica de la Plata.; ArgentinaAcademic Press Inc Elsevier Science2020-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/119698Antezana, Jorge Abel; García, María Guadalupe; Model subspaces techniques to study Fourier expansions in L^2 spaces associated to singular measures; Academic Press Inc Elsevier Science; Journal of Functional Analysis; 279; 10; 12-2020; 1-200022-1236CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0022123620302688info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jfa.2020.108725info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1907.08876info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:36:44Zoai:ri.conicet.gov.ar:11336/119698instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:36:44.815CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Model subspaces techniques to study Fourier expansions in L^2 spaces associated to singular measures |
title |
Model subspaces techniques to study Fourier expansions in L^2 spaces associated to singular measures |
spellingShingle |
Model subspaces techniques to study Fourier expansions in L^2 spaces associated to singular measures Antezana, Jorge Abel FOURIER EXPANSIONS KACZMARZ ALGORITHM MODEL SUBSPACES PARSEVAL FRAMES |
title_short |
Model subspaces techniques to study Fourier expansions in L^2 spaces associated to singular measures |
title_full |
Model subspaces techniques to study Fourier expansions in L^2 spaces associated to singular measures |
title_fullStr |
Model subspaces techniques to study Fourier expansions in L^2 spaces associated to singular measures |
title_full_unstemmed |
Model subspaces techniques to study Fourier expansions in L^2 spaces associated to singular measures |
title_sort |
Model subspaces techniques to study Fourier expansions in L^2 spaces associated to singular measures |
dc.creator.none.fl_str_mv |
Antezana, Jorge Abel García, María Guadalupe |
author |
Antezana, Jorge Abel |
author_facet |
Antezana, Jorge Abel García, María Guadalupe |
author_role |
author |
author2 |
García, María Guadalupe |
author2_role |
author |
dc.subject.none.fl_str_mv |
FOURIER EXPANSIONS KACZMARZ ALGORITHM MODEL SUBSPACES PARSEVAL FRAMES |
topic |
FOURIER EXPANSIONS KACZMARZ ALGORITHM MODEL SUBSPACES PARSEVAL FRAMES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Let μ be a probability measure on T that is singular with respect to the Haar measure. In this paper we study Fourier expansions in L2(T,μ) using techniques from the theory of model subspaces of the Hardy space. Since the sequence of monomials {zn}n∈N is effective in L2(T,μ), it has a Parseval frame associated via the Kaczmarz algorithm. Our first main goal is to identify the aforementioned frame with boundary values of the frame Pφ(zn) for the model subspace H(φ)=H2⊖φH2, where Pφ is the orthogonal projection from the Hardy space H2 onto H(φ). The study of Fourier expansions in L2(T,μ) also leads to consider positive kernels in the Hardy space. Our second main goal is to study the set of measures μ which reproduce a kernel contained in a model subspace. We completely characterize this set when the kernel is the reproducing kernel of a model subspace, and we study the consequences of this characterization. Fil: Antezana, Jorge Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de la Plata. Facultad de Cs.exactas. Centro de Matematica de la Plata.; Argentina Fil: García, María Guadalupe. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de la Plata. Facultad de Cs.exactas. Centro de Matematica de la Plata.; Argentina |
description |
Let μ be a probability measure on T that is singular with respect to the Haar measure. In this paper we study Fourier expansions in L2(T,μ) using techniques from the theory of model subspaces of the Hardy space. Since the sequence of monomials {zn}n∈N is effective in L2(T,μ), it has a Parseval frame associated via the Kaczmarz algorithm. Our first main goal is to identify the aforementioned frame with boundary values of the frame Pφ(zn) for the model subspace H(φ)=H2⊖φH2, where Pφ is the orthogonal projection from the Hardy space H2 onto H(φ). The study of Fourier expansions in L2(T,μ) also leads to consider positive kernels in the Hardy space. Our second main goal is to study the set of measures μ which reproduce a kernel contained in a model subspace. We completely characterize this set when the kernel is the reproducing kernel of a model subspace, and we study the consequences of this characterization. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/119698 Antezana, Jorge Abel; García, María Guadalupe; Model subspaces techniques to study Fourier expansions in L^2 spaces associated to singular measures; Academic Press Inc Elsevier Science; Journal of Functional Analysis; 279; 10; 12-2020; 1-20 0022-1236 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/119698 |
identifier_str_mv |
Antezana, Jorge Abel; García, María Guadalupe; Model subspaces techniques to study Fourier expansions in L^2 spaces associated to singular measures; Academic Press Inc Elsevier Science; Journal of Functional Analysis; 279; 10; 12-2020; 1-20 0022-1236 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0022123620302688 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jfa.2020.108725 info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1907.08876 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614388095385600 |
score |
13.070432 |