Optimization methods for the operation room management under uncertainty: Stochastic programming vs. Decomposition approach
- Autores
- Pulido, Raul; Aguirre, Adrian Marcelo; Ibañez Herrero, Natalia; Ortega Mier, Miguel; García Sanchez, Alvaro; Mendez, Carlos Alberto
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The operating theatres are the engine of the hospitals; proper management of the operating rooms and its staff represents a great challenge for managers and its results impact directly in the budget of the hospital. This work presents a MILP model for the efficient schedule of multiple surgeries in Operating Rooms (ORs) during a working day. This model considers multiple surgeons and ORs and different types of surgeries. Stochastic strategies are also implemented for taking into account the uncertain in surgery durations (pre-incision, incision, post-incision times). In addition, a heuristic-based methods and a MILP decomposition approach is proposed for solving large-scale ORs scheduling problems in computational efficient way. All these computer-aided strategies has been implemented in AIMMS, as an advanced modeling and optimization software, developing a user friendly solution tool for the operating room management under uncertainty.
Fil: Pulido, Raul. Escuela Técnica Superior de Ingenieros Industriales; España
Fil: Aguirre, Adrian Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina
Fil: Ibañez Herrero, Natalia. Escuela Técnica Superior de Ingenieros Industriales; España
Fil: Ortega Mier, Miguel. Escuela Técnica Superior de Ingenieros Industriales; España
Fil: García Sanchez, Alvaro. Escuela Técnica Superior de Ingenieros Industriales; España
Fil: Mendez, Carlos Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina - Materia
-
Stochastic Optimization
Decomposition Approach
Scheduling - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/9580
Ver los metadatos del registro completo
id |
CONICETDig_3e7c6104008976575dd9d7fd61209e7d |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/9580 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Optimization methods for the operation room management under uncertainty: Stochastic programming vs. Decomposition approachPulido, RaulAguirre, Adrian MarceloIbañez Herrero, NataliaOrtega Mier, MiguelGarcía Sanchez, AlvaroMendez, Carlos AlbertoStochastic OptimizationDecomposition ApproachSchedulinghttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2The operating theatres are the engine of the hospitals; proper management of the operating rooms and its staff represents a great challenge for managers and its results impact directly in the budget of the hospital. This work presents a MILP model for the efficient schedule of multiple surgeries in Operating Rooms (ORs) during a working day. This model considers multiple surgeons and ORs and different types of surgeries. Stochastic strategies are also implemented for taking into account the uncertain in surgery durations (pre-incision, incision, post-incision times). In addition, a heuristic-based methods and a MILP decomposition approach is proposed for solving large-scale ORs scheduling problems in computational efficient way. All these computer-aided strategies has been implemented in AIMMS, as an advanced modeling and optimization software, developing a user friendly solution tool for the operating room management under uncertainty.Fil: Pulido, Raul. Escuela Técnica Superior de Ingenieros Industriales; EspañaFil: Aguirre, Adrian Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); ArgentinaFil: Ibañez Herrero, Natalia. Escuela Técnica Superior de Ingenieros Industriales; EspañaFil: Ortega Mier, Miguel. Escuela Técnica Superior de Ingenieros Industriales; EspañaFil: García Sanchez, Alvaro. Escuela Técnica Superior de Ingenieros Industriales; EspañaFil: Mendez, Carlos Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); ArgentinaTadbir Operational Research Group2014-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/9580Pulido, Raul; Aguirre, Adrian Marcelo; Ibañez Herrero, Natalia; Ortega Mier, Miguel; García Sanchez, Alvaro; et al.; Optimization methods for the operation room management under uncertainty: Stochastic programming vs. Decomposition approach; Tadbir Operational Research Group; Journal of Applied Operational Research; 6; 9-2014; 145-1571735-8523enginfo:eu-repo/semantics/altIdentifier/url/http://orlabanalytics.ca/jaor/archive/v6n3.htminfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:58:07Zoai:ri.conicet.gov.ar:11336/9580instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:58:07.469CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Optimization methods for the operation room management under uncertainty: Stochastic programming vs. Decomposition approach |
title |
Optimization methods for the operation room management under uncertainty: Stochastic programming vs. Decomposition approach |
spellingShingle |
Optimization methods for the operation room management under uncertainty: Stochastic programming vs. Decomposition approach Pulido, Raul Stochastic Optimization Decomposition Approach Scheduling |
title_short |
Optimization methods for the operation room management under uncertainty: Stochastic programming vs. Decomposition approach |
title_full |
Optimization methods for the operation room management under uncertainty: Stochastic programming vs. Decomposition approach |
title_fullStr |
Optimization methods for the operation room management under uncertainty: Stochastic programming vs. Decomposition approach |
title_full_unstemmed |
Optimization methods for the operation room management under uncertainty: Stochastic programming vs. Decomposition approach |
title_sort |
Optimization methods for the operation room management under uncertainty: Stochastic programming vs. Decomposition approach |
dc.creator.none.fl_str_mv |
Pulido, Raul Aguirre, Adrian Marcelo Ibañez Herrero, Natalia Ortega Mier, Miguel García Sanchez, Alvaro Mendez, Carlos Alberto |
author |
Pulido, Raul |
author_facet |
Pulido, Raul Aguirre, Adrian Marcelo Ibañez Herrero, Natalia Ortega Mier, Miguel García Sanchez, Alvaro Mendez, Carlos Alberto |
author_role |
author |
author2 |
Aguirre, Adrian Marcelo Ibañez Herrero, Natalia Ortega Mier, Miguel García Sanchez, Alvaro Mendez, Carlos Alberto |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
Stochastic Optimization Decomposition Approach Scheduling |
topic |
Stochastic Optimization Decomposition Approach Scheduling |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.4 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
The operating theatres are the engine of the hospitals; proper management of the operating rooms and its staff represents a great challenge for managers and its results impact directly in the budget of the hospital. This work presents a MILP model for the efficient schedule of multiple surgeries in Operating Rooms (ORs) during a working day. This model considers multiple surgeons and ORs and different types of surgeries. Stochastic strategies are also implemented for taking into account the uncertain in surgery durations (pre-incision, incision, post-incision times). In addition, a heuristic-based methods and a MILP decomposition approach is proposed for solving large-scale ORs scheduling problems in computational efficient way. All these computer-aided strategies has been implemented in AIMMS, as an advanced modeling and optimization software, developing a user friendly solution tool for the operating room management under uncertainty. Fil: Pulido, Raul. Escuela Técnica Superior de Ingenieros Industriales; España Fil: Aguirre, Adrian Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina Fil: Ibañez Herrero, Natalia. Escuela Técnica Superior de Ingenieros Industriales; España Fil: Ortega Mier, Miguel. Escuela Técnica Superior de Ingenieros Industriales; España Fil: García Sanchez, Alvaro. Escuela Técnica Superior de Ingenieros Industriales; España Fil: Mendez, Carlos Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina |
description |
The operating theatres are the engine of the hospitals; proper management of the operating rooms and its staff represents a great challenge for managers and its results impact directly in the budget of the hospital. This work presents a MILP model for the efficient schedule of multiple surgeries in Operating Rooms (ORs) during a working day. This model considers multiple surgeons and ORs and different types of surgeries. Stochastic strategies are also implemented for taking into account the uncertain in surgery durations (pre-incision, incision, post-incision times). In addition, a heuristic-based methods and a MILP decomposition approach is proposed for solving large-scale ORs scheduling problems in computational efficient way. All these computer-aided strategies has been implemented in AIMMS, as an advanced modeling and optimization software, developing a user friendly solution tool for the operating room management under uncertainty. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/9580 Pulido, Raul; Aguirre, Adrian Marcelo; Ibañez Herrero, Natalia; Ortega Mier, Miguel; García Sanchez, Alvaro; et al.; Optimization methods for the operation room management under uncertainty: Stochastic programming vs. Decomposition approach; Tadbir Operational Research Group; Journal of Applied Operational Research; 6; 9-2014; 145-157 1735-8523 |
url |
http://hdl.handle.net/11336/9580 |
identifier_str_mv |
Pulido, Raul; Aguirre, Adrian Marcelo; Ibañez Herrero, Natalia; Ortega Mier, Miguel; García Sanchez, Alvaro; et al.; Optimization methods for the operation room management under uncertainty: Stochastic programming vs. Decomposition approach; Tadbir Operational Research Group; Journal of Applied Operational Research; 6; 9-2014; 145-157 1735-8523 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://orlabanalytics.ca/jaor/archive/v6n3.htm |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Tadbir Operational Research Group |
publisher.none.fl_str_mv |
Tadbir Operational Research Group |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269502402723840 |
score |
13.13397 |