The Hopf algebra of Möbius intervals

Autores
Lawvere, F. W.; Menni, Matías
Año de publicación
2010
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
An unpublished result by the first author states that there exists a Hopf algebra H such that for any Moebius category C (in the sense of Leroux) there exists a canonical algebra morphism from the dual H* of H to the incidence algebra of C. Moreover, the Moebius inversion principle in incidence algebras follows from a `master´ inversion result in H*. The underlying module of H was originally defined as the free module on the set of iso classes of Moebius intervals, i.e. Moebius categories with initial and terminal objects. Here we consider a category of Moebius intervals and construct the Hopf algebra via the objective approach applied to a monoidal extensive category of combinatorial objects, with the values in appropriate rings being abstracted from combinatorial functors on the objects. The explicit consideration of a category of Moebius intervals leads also to two new characterizations of Moebius categories.
Fil: Lawvere, F. W.. No especifíca;
Fil: Menni, Matías. Ministerio de Educación, Cultura, Ciencia y Tecnología. Secretaria de Gobierno de Ciencia Tecnología e Innovación Productiva. Agencia Nacional de Promoción Científica y Tecnológica. Fondo Argentino Sectorial; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
Mobius category
Incidence algebra
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/198349

id CONICETDig_100917b05287153d72ef3bde838dca2b
oai_identifier_str oai:ri.conicet.gov.ar:11336/198349
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling The Hopf algebra of Möbius intervalsLawvere, F. W.Menni, MatíasMobius categoryIncidence algebrahttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1An unpublished result by the first author states that there exists a Hopf algebra H such that for any Moebius category C (in the sense of Leroux) there exists a canonical algebra morphism from the dual H* of H to the incidence algebra of C. Moreover, the Moebius inversion principle in incidence algebras follows from a `master´ inversion result in H*. The underlying module of H was originally defined as the free module on the set of iso classes of Moebius intervals, i.e. Moebius categories with initial and terminal objects. Here we consider a category of Moebius intervals and construct the Hopf algebra via the objective approach applied to a monoidal extensive category of combinatorial objects, with the values in appropriate rings being abstracted from combinatorial functors on the objects. The explicit consideration of a category of Moebius intervals leads also to two new characterizations of Moebius categories.Fil: Lawvere, F. W.. No especifíca;Fil: Menni, Matías. Ministerio de Educación, Cultura, Ciencia y Tecnología. Secretaria de Gobierno de Ciencia Tecnología e Innovación Productiva. Agencia Nacional de Promoción Científica y Tecnológica. Fondo Argentino Sectorial; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaMount Allison University2010-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/198349Lawvere, F. W.; Menni, Matías; The Hopf algebra of Möbius intervals; Mount Allison University; Theory And Applications Of Categories; 24; 1-2010; 221-2651201-561XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.tac.mta.ca/tac/volumes/24/10/24-10abs.htmlinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:14:47Zoai:ri.conicet.gov.ar:11336/198349instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:14:48.12CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv The Hopf algebra of Möbius intervals
title The Hopf algebra of Möbius intervals
spellingShingle The Hopf algebra of Möbius intervals
Lawvere, F. W.
Mobius category
Incidence algebra
title_short The Hopf algebra of Möbius intervals
title_full The Hopf algebra of Möbius intervals
title_fullStr The Hopf algebra of Möbius intervals
title_full_unstemmed The Hopf algebra of Möbius intervals
title_sort The Hopf algebra of Möbius intervals
dc.creator.none.fl_str_mv Lawvere, F. W.
Menni, Matías
author Lawvere, F. W.
author_facet Lawvere, F. W.
Menni, Matías
author_role author
author2 Menni, Matías
author2_role author
dc.subject.none.fl_str_mv Mobius category
Incidence algebra
topic Mobius category
Incidence algebra
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv An unpublished result by the first author states that there exists a Hopf algebra H such that for any Moebius category C (in the sense of Leroux) there exists a canonical algebra morphism from the dual H* of H to the incidence algebra of C. Moreover, the Moebius inversion principle in incidence algebras follows from a `master´ inversion result in H*. The underlying module of H was originally defined as the free module on the set of iso classes of Moebius intervals, i.e. Moebius categories with initial and terminal objects. Here we consider a category of Moebius intervals and construct the Hopf algebra via the objective approach applied to a monoidal extensive category of combinatorial objects, with the values in appropriate rings being abstracted from combinatorial functors on the objects. The explicit consideration of a category of Moebius intervals leads also to two new characterizations of Moebius categories.
Fil: Lawvere, F. W.. No especifíca;
Fil: Menni, Matías. Ministerio de Educación, Cultura, Ciencia y Tecnología. Secretaria de Gobierno de Ciencia Tecnología e Innovación Productiva. Agencia Nacional de Promoción Científica y Tecnológica. Fondo Argentino Sectorial; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description An unpublished result by the first author states that there exists a Hopf algebra H such that for any Moebius category C (in the sense of Leroux) there exists a canonical algebra morphism from the dual H* of H to the incidence algebra of C. Moreover, the Moebius inversion principle in incidence algebras follows from a `master´ inversion result in H*. The underlying module of H was originally defined as the free module on the set of iso classes of Moebius intervals, i.e. Moebius categories with initial and terminal objects. Here we consider a category of Moebius intervals and construct the Hopf algebra via the objective approach applied to a monoidal extensive category of combinatorial objects, with the values in appropriate rings being abstracted from combinatorial functors on the objects. The explicit consideration of a category of Moebius intervals leads also to two new characterizations of Moebius categories.
publishDate 2010
dc.date.none.fl_str_mv 2010-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/198349
Lawvere, F. W.; Menni, Matías; The Hopf algebra of Möbius intervals; Mount Allison University; Theory And Applications Of Categories; 24; 1-2010; 221-265
1201-561X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/198349
identifier_str_mv Lawvere, F. W.; Menni, Matías; The Hopf algebra of Möbius intervals; Mount Allison University; Theory And Applications Of Categories; 24; 1-2010; 221-265
1201-561X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.tac.mta.ca/tac/volumes/24/10/24-10abs.html
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Mount Allison University
publisher.none.fl_str_mv Mount Allison University
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083295574491136
score 12.891075