The Hopf algebra of Möbius intervals
- Autores
- Lawvere, F. W.; Menni, Matías
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- An unpublished result by the first author states that there exists a Hopf algebra H such that for any Moebius category C (in the sense of Leroux) there exists a canonical algebra morphism from the dual H* of H to the incidence algebra of C. Moreover, the Moebius inversion principle in incidence algebras follows from a `master´ inversion result in H*. The underlying module of H was originally defined as the free module on the set of iso classes of Moebius intervals, i.e. Moebius categories with initial and terminal objects. Here we consider a category of Moebius intervals and construct the Hopf algebra via the objective approach applied to a monoidal extensive category of combinatorial objects, with the values in appropriate rings being abstracted from combinatorial functors on the objects. The explicit consideration of a category of Moebius intervals leads also to two new characterizations of Moebius categories.
Fil: Lawvere, F. W.. No especifíca;
Fil: Menni, Matías. Ministerio de Educación, Cultura, Ciencia y Tecnología. Secretaria de Gobierno de Ciencia Tecnología e Innovación Productiva. Agencia Nacional de Promoción Científica y Tecnológica. Fondo Argentino Sectorial; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Mobius category
Incidence algebra - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/198349
Ver los metadatos del registro completo
id |
CONICETDig_100917b05287153d72ef3bde838dca2b |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/198349 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
The Hopf algebra of Möbius intervalsLawvere, F. W.Menni, MatíasMobius categoryIncidence algebrahttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1An unpublished result by the first author states that there exists a Hopf algebra H such that for any Moebius category C (in the sense of Leroux) there exists a canonical algebra morphism from the dual H* of H to the incidence algebra of C. Moreover, the Moebius inversion principle in incidence algebras follows from a `master´ inversion result in H*. The underlying module of H was originally defined as the free module on the set of iso classes of Moebius intervals, i.e. Moebius categories with initial and terminal objects. Here we consider a category of Moebius intervals and construct the Hopf algebra via the objective approach applied to a monoidal extensive category of combinatorial objects, with the values in appropriate rings being abstracted from combinatorial functors on the objects. The explicit consideration of a category of Moebius intervals leads also to two new characterizations of Moebius categories.Fil: Lawvere, F. W.. No especifíca;Fil: Menni, Matías. Ministerio de Educación, Cultura, Ciencia y Tecnología. Secretaria de Gobierno de Ciencia Tecnología e Innovación Productiva. Agencia Nacional de Promoción Científica y Tecnológica. Fondo Argentino Sectorial; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaMount Allison University2010-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/198349Lawvere, F. W.; Menni, Matías; The Hopf algebra of Möbius intervals; Mount Allison University; Theory And Applications Of Categories; 24; 1-2010; 221-2651201-561XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.tac.mta.ca/tac/volumes/24/10/24-10abs.htmlinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:14:47Zoai:ri.conicet.gov.ar:11336/198349instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:14:48.12CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
The Hopf algebra of Möbius intervals |
title |
The Hopf algebra of Möbius intervals |
spellingShingle |
The Hopf algebra of Möbius intervals Lawvere, F. W. Mobius category Incidence algebra |
title_short |
The Hopf algebra of Möbius intervals |
title_full |
The Hopf algebra of Möbius intervals |
title_fullStr |
The Hopf algebra of Möbius intervals |
title_full_unstemmed |
The Hopf algebra of Möbius intervals |
title_sort |
The Hopf algebra of Möbius intervals |
dc.creator.none.fl_str_mv |
Lawvere, F. W. Menni, Matías |
author |
Lawvere, F. W. |
author_facet |
Lawvere, F. W. Menni, Matías |
author_role |
author |
author2 |
Menni, Matías |
author2_role |
author |
dc.subject.none.fl_str_mv |
Mobius category Incidence algebra |
topic |
Mobius category Incidence algebra |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
An unpublished result by the first author states that there exists a Hopf algebra H such that for any Moebius category C (in the sense of Leroux) there exists a canonical algebra morphism from the dual H* of H to the incidence algebra of C. Moreover, the Moebius inversion principle in incidence algebras follows from a `master´ inversion result in H*. The underlying module of H was originally defined as the free module on the set of iso classes of Moebius intervals, i.e. Moebius categories with initial and terminal objects. Here we consider a category of Moebius intervals and construct the Hopf algebra via the objective approach applied to a monoidal extensive category of combinatorial objects, with the values in appropriate rings being abstracted from combinatorial functors on the objects. The explicit consideration of a category of Moebius intervals leads also to two new characterizations of Moebius categories. Fil: Lawvere, F. W.. No especifíca; Fil: Menni, Matías. Ministerio de Educación, Cultura, Ciencia y Tecnología. Secretaria de Gobierno de Ciencia Tecnología e Innovación Productiva. Agencia Nacional de Promoción Científica y Tecnológica. Fondo Argentino Sectorial; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
An unpublished result by the first author states that there exists a Hopf algebra H such that for any Moebius category C (in the sense of Leroux) there exists a canonical algebra morphism from the dual H* of H to the incidence algebra of C. Moreover, the Moebius inversion principle in incidence algebras follows from a `master´ inversion result in H*. The underlying module of H was originally defined as the free module on the set of iso classes of Moebius intervals, i.e. Moebius categories with initial and terminal objects. Here we consider a category of Moebius intervals and construct the Hopf algebra via the objective approach applied to a monoidal extensive category of combinatorial objects, with the values in appropriate rings being abstracted from combinatorial functors on the objects. The explicit consideration of a category of Moebius intervals leads also to two new characterizations of Moebius categories. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/198349 Lawvere, F. W.; Menni, Matías; The Hopf algebra of Möbius intervals; Mount Allison University; Theory And Applications Of Categories; 24; 1-2010; 221-265 1201-561X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/198349 |
identifier_str_mv |
Lawvere, F. W.; Menni, Matías; The Hopf algebra of Möbius intervals; Mount Allison University; Theory And Applications Of Categories; 24; 1-2010; 221-265 1201-561X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.tac.mta.ca/tac/volumes/24/10/24-10abs.html |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Mount Allison University |
publisher.none.fl_str_mv |
Mount Allison University |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083295574491136 |
score |
12.891075 |