Isomorphisms of Nonnoetherian Down-Up Algebras
- Autores
- Chouhy, Sergio Nicolás; Solotar, Andrea Leonor
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We solve the isomorphism problem for nonnoetherian down-up algebras A(α, 0, γ) by lifting isomorphisms between some of their noncommutative quotients. The quotients we consider are either quantum polynomial algebras in two variables for γ = 0 or quantum versions of the Weyl algebra A1 for nonzero γ. In particular we obtain that no other down-up algebra is isomorphic to the monomial algebra A(0, 0, 0). We prove in the second part of the article that this is the only monomial algebra within the family of down-up algebras. Our method uses homological invariants that determine the shape of the possible quivers and we apply the abelianization functor to complete the proof.
Fil: Chouhy, Sergio Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Solotar, Andrea Leonor. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina - Materia
-
DOWN-UP ALGEBRA
ISOMORPHISM
MONOMIAL
NONNOETHERIAN - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/88962
Ver los metadatos del registro completo
id |
CONICETDig_0fbe7023a5420922d25901829c794733 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/88962 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Isomorphisms of Nonnoetherian Down-Up AlgebrasChouhy, Sergio NicolásSolotar, Andrea LeonorDOWN-UP ALGEBRAISOMORPHISMMONOMIALNONNOETHERIANhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We solve the isomorphism problem for nonnoetherian down-up algebras A(α, 0, γ) by lifting isomorphisms between some of their noncommutative quotients. The quotients we consider are either quantum polynomial algebras in two variables for γ = 0 or quantum versions of the Weyl algebra A1 for nonzero γ. In particular we obtain that no other down-up algebra is isomorphic to the monomial algebra A(0, 0, 0). We prove in the second part of the article that this is the only monomial algebra within the family of down-up algebras. Our method uses homological invariants that determine the shape of the possible quivers and we apply the abelianization functor to complete the proof.Fil: Chouhy, Sergio Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Solotar, Andrea Leonor. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaSpringer2018-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/88962Chouhy, Sergio Nicolás; Solotar, Andrea Leonor; Isomorphisms of Nonnoetherian Down-Up Algebras; Springer; Algebras and Representation Theory; 21; 6; 12-2018; 1343-13521386-923XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s10468-017-9749-1info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs10468-017-9749-1info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:06:45Zoai:ri.conicet.gov.ar:11336/88962instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:06:45.98CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Isomorphisms of Nonnoetherian Down-Up Algebras |
title |
Isomorphisms of Nonnoetherian Down-Up Algebras |
spellingShingle |
Isomorphisms of Nonnoetherian Down-Up Algebras Chouhy, Sergio Nicolás DOWN-UP ALGEBRA ISOMORPHISM MONOMIAL NONNOETHERIAN |
title_short |
Isomorphisms of Nonnoetherian Down-Up Algebras |
title_full |
Isomorphisms of Nonnoetherian Down-Up Algebras |
title_fullStr |
Isomorphisms of Nonnoetherian Down-Up Algebras |
title_full_unstemmed |
Isomorphisms of Nonnoetherian Down-Up Algebras |
title_sort |
Isomorphisms of Nonnoetherian Down-Up Algebras |
dc.creator.none.fl_str_mv |
Chouhy, Sergio Nicolás Solotar, Andrea Leonor |
author |
Chouhy, Sergio Nicolás |
author_facet |
Chouhy, Sergio Nicolás Solotar, Andrea Leonor |
author_role |
author |
author2 |
Solotar, Andrea Leonor |
author2_role |
author |
dc.subject.none.fl_str_mv |
DOWN-UP ALGEBRA ISOMORPHISM MONOMIAL NONNOETHERIAN |
topic |
DOWN-UP ALGEBRA ISOMORPHISM MONOMIAL NONNOETHERIAN |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We solve the isomorphism problem for nonnoetherian down-up algebras A(α, 0, γ) by lifting isomorphisms between some of their noncommutative quotients. The quotients we consider are either quantum polynomial algebras in two variables for γ = 0 or quantum versions of the Weyl algebra A1 for nonzero γ. In particular we obtain that no other down-up algebra is isomorphic to the monomial algebra A(0, 0, 0). We prove in the second part of the article that this is the only monomial algebra within the family of down-up algebras. Our method uses homological invariants that determine the shape of the possible quivers and we apply the abelianization functor to complete the proof. Fil: Chouhy, Sergio Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Solotar, Andrea Leonor. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina |
description |
We solve the isomorphism problem for nonnoetherian down-up algebras A(α, 0, γ) by lifting isomorphisms between some of their noncommutative quotients. The quotients we consider are either quantum polynomial algebras in two variables for γ = 0 or quantum versions of the Weyl algebra A1 for nonzero γ. In particular we obtain that no other down-up algebra is isomorphic to the monomial algebra A(0, 0, 0). We prove in the second part of the article that this is the only monomial algebra within the family of down-up algebras. Our method uses homological invariants that determine the shape of the possible quivers and we apply the abelianization functor to complete the proof. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/88962 Chouhy, Sergio Nicolás; Solotar, Andrea Leonor; Isomorphisms of Nonnoetherian Down-Up Algebras; Springer; Algebras and Representation Theory; 21; 6; 12-2018; 1343-1352 1386-923X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/88962 |
identifier_str_mv |
Chouhy, Sergio Nicolás; Solotar, Andrea Leonor; Isomorphisms of Nonnoetherian Down-Up Algebras; Springer; Algebras and Representation Theory; 21; 6; 12-2018; 1343-1352 1386-923X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s10468-017-9749-1 info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs10468-017-9749-1 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269973346516992 |
score |
13.13397 |