Isomorphisms of Nonnoetherian Down-Up Algebras

Autores
Chouhy, Sergio Nicolás; Solotar, Andrea Leonor
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We solve the isomorphism problem for nonnoetherian down-up algebras A(α, 0, γ) by lifting isomorphisms between some of their noncommutative quotients. The quotients we consider are either quantum polynomial algebras in two variables for γ = 0 or quantum versions of the Weyl algebra A1 for nonzero γ. In particular we obtain that no other down-up algebra is isomorphic to the monomial algebra A(0, 0, 0). We prove in the second part of the article that this is the only monomial algebra within the family of down-up algebras. Our method uses homological invariants that determine the shape of the possible quivers and we apply the abelianization functor to complete the proof.
Fil: Chouhy, Sergio Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Solotar, Andrea Leonor. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Materia
DOWN-UP ALGEBRA
ISOMORPHISM
MONOMIAL
NONNOETHERIAN
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/88962

id CONICETDig_0fbe7023a5420922d25901829c794733
oai_identifier_str oai:ri.conicet.gov.ar:11336/88962
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Isomorphisms of Nonnoetherian Down-Up AlgebrasChouhy, Sergio NicolásSolotar, Andrea LeonorDOWN-UP ALGEBRAISOMORPHISMMONOMIALNONNOETHERIANhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We solve the isomorphism problem for nonnoetherian down-up algebras A(α, 0, γ) by lifting isomorphisms between some of their noncommutative quotients. The quotients we consider are either quantum polynomial algebras in two variables for γ = 0 or quantum versions of the Weyl algebra A1 for nonzero γ. In particular we obtain that no other down-up algebra is isomorphic to the monomial algebra A(0, 0, 0). We prove in the second part of the article that this is the only monomial algebra within the family of down-up algebras. Our method uses homological invariants that determine the shape of the possible quivers and we apply the abelianization functor to complete the proof.Fil: Chouhy, Sergio Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Solotar, Andrea Leonor. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaSpringer2018-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/88962Chouhy, Sergio Nicolás; Solotar, Andrea Leonor; Isomorphisms of Nonnoetherian Down-Up Algebras; Springer; Algebras and Representation Theory; 21; 6; 12-2018; 1343-13521386-923XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s10468-017-9749-1info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs10468-017-9749-1info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:06:45Zoai:ri.conicet.gov.ar:11336/88962instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:06:45.98CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Isomorphisms of Nonnoetherian Down-Up Algebras
title Isomorphisms of Nonnoetherian Down-Up Algebras
spellingShingle Isomorphisms of Nonnoetherian Down-Up Algebras
Chouhy, Sergio Nicolás
DOWN-UP ALGEBRA
ISOMORPHISM
MONOMIAL
NONNOETHERIAN
title_short Isomorphisms of Nonnoetherian Down-Up Algebras
title_full Isomorphisms of Nonnoetherian Down-Up Algebras
title_fullStr Isomorphisms of Nonnoetherian Down-Up Algebras
title_full_unstemmed Isomorphisms of Nonnoetherian Down-Up Algebras
title_sort Isomorphisms of Nonnoetherian Down-Up Algebras
dc.creator.none.fl_str_mv Chouhy, Sergio Nicolás
Solotar, Andrea Leonor
author Chouhy, Sergio Nicolás
author_facet Chouhy, Sergio Nicolás
Solotar, Andrea Leonor
author_role author
author2 Solotar, Andrea Leonor
author2_role author
dc.subject.none.fl_str_mv DOWN-UP ALGEBRA
ISOMORPHISM
MONOMIAL
NONNOETHERIAN
topic DOWN-UP ALGEBRA
ISOMORPHISM
MONOMIAL
NONNOETHERIAN
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We solve the isomorphism problem for nonnoetherian down-up algebras A(α, 0, γ) by lifting isomorphisms between some of their noncommutative quotients. The quotients we consider are either quantum polynomial algebras in two variables for γ = 0 or quantum versions of the Weyl algebra A1 for nonzero γ. In particular we obtain that no other down-up algebra is isomorphic to the monomial algebra A(0, 0, 0). We prove in the second part of the article that this is the only monomial algebra within the family of down-up algebras. Our method uses homological invariants that determine the shape of the possible quivers and we apply the abelianization functor to complete the proof.
Fil: Chouhy, Sergio Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Solotar, Andrea Leonor. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
description We solve the isomorphism problem for nonnoetherian down-up algebras A(α, 0, γ) by lifting isomorphisms between some of their noncommutative quotients. The quotients we consider are either quantum polynomial algebras in two variables for γ = 0 or quantum versions of the Weyl algebra A1 for nonzero γ. In particular we obtain that no other down-up algebra is isomorphic to the monomial algebra A(0, 0, 0). We prove in the second part of the article that this is the only monomial algebra within the family of down-up algebras. Our method uses homological invariants that determine the shape of the possible quivers and we apply the abelianization functor to complete the proof.
publishDate 2018
dc.date.none.fl_str_mv 2018-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/88962
Chouhy, Sergio Nicolás; Solotar, Andrea Leonor; Isomorphisms of Nonnoetherian Down-Up Algebras; Springer; Algebras and Representation Theory; 21; 6; 12-2018; 1343-1352
1386-923X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/88962
identifier_str_mv Chouhy, Sergio Nicolás; Solotar, Andrea Leonor; Isomorphisms of Nonnoetherian Down-Up Algebras; Springer; Algebras and Representation Theory; 21; 6; 12-2018; 1343-1352
1386-923X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1007/s10468-017-9749-1
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs10468-017-9749-1
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269973346516992
score 13.13397