Relative viscoelasticity of soy protein hydrolysate and polysaccharides mixtures at cooling conditions analyzed by response surface methodology

Autores
Martínez, Karina Dafne; Pilosof, Ana Maria Renata
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The objective of this work was to study the relative viscoelasticity of soy protein hydrolysate and polysaccharides mixtures at cooling conditions analyzed by response surface methodology.Systems of soy protein hydrolysate (HSP) of 4% degree of hydrolysis, a hydroxypropylmethylcellulose (E4M) and kappa-carrageenan (κC) were made with concentrations conformed by Doehlert matrix as experimental design used.The samples were subjected to dynamic rheological studies with a control stress rheometer, Paar Physica MCR 300, with a program with a heating and a cooling period. At the end of the cooling at 10 °C the relative viscoelasticity (tan. δ) was evaluated from these measurements.To relate the relative viscoelasticity with the components of systems and their concentrations at cooling conditions the response surface methodology was used to obtain this information.The results obtained indicate that E4M promoted in general a decrease of relative viscoelasticity only in the combined systems. When E4M was in combination with HSP, two regions in the plot with the lowest tan. δ can be possible to obtain. One of them was at lower HSP and E4M concentrations and the other at the HSP and E4M highest concentrations. In similar way, when E4M was in combination with κC an increase of relative viscoelasticity was observed at the lowest E4M and κC concentrations and other region was found at the highest E4M and κC concentrations.In other hand, κC would enhance a higher relative viscoelasticity, however, when this polysaccharide was used in combination with hydrolyzed soy protein and/or E4M, a decrease of relative viscoelasticity was observed in the mixed systems.It can be concluded that E4M is the principal component which determines high viscoelastic characteristics in combination with hydrolyzed soy proteins and κC at 10 °C.
Fil: Martínez, Karina Dafne. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Industrias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Pilosof, Ana Maria Renata. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Industrias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
Gelation
Hydrolysates
Polysaccharides
Response Surface Methodology
Soy Protein
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/68282

id CONICETDig_0f136d2d17b0861b9e95ff954324964e
oai_identifier_str oai:ri.conicet.gov.ar:11336/68282
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Relative viscoelasticity of soy protein hydrolysate and polysaccharides mixtures at cooling conditions analyzed by response surface methodologyMartínez, Karina DafnePilosof, Ana Maria RenataGelationHydrolysatesPolysaccharidesResponse Surface MethodologySoy Proteinhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1The objective of this work was to study the relative viscoelasticity of soy protein hydrolysate and polysaccharides mixtures at cooling conditions analyzed by response surface methodology.Systems of soy protein hydrolysate (HSP) of 4% degree of hydrolysis, a hydroxypropylmethylcellulose (E4M) and kappa-carrageenan (κC) were made with concentrations conformed by Doehlert matrix as experimental design used.The samples were subjected to dynamic rheological studies with a control stress rheometer, Paar Physica MCR 300, with a program with a heating and a cooling period. At the end of the cooling at 10 °C the relative viscoelasticity (tan. δ) was evaluated from these measurements.To relate the relative viscoelasticity with the components of systems and their concentrations at cooling conditions the response surface methodology was used to obtain this information.The results obtained indicate that E4M promoted in general a decrease of relative viscoelasticity only in the combined systems. When E4M was in combination with HSP, two regions in the plot with the lowest tan. δ can be possible to obtain. One of them was at lower HSP and E4M concentrations and the other at the HSP and E4M highest concentrations. In similar way, when E4M was in combination with κC an increase of relative viscoelasticity was observed at the lowest E4M and κC concentrations and other region was found at the highest E4M and κC concentrations.In other hand, κC would enhance a higher relative viscoelasticity, however, when this polysaccharide was used in combination with hydrolyzed soy protein and/or E4M, a decrease of relative viscoelasticity was observed in the mixed systems.It can be concluded that E4M is the principal component which determines high viscoelastic characteristics in combination with hydrolyzed soy proteins and κC at 10 °C.Fil: Martínez, Karina Dafne. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Industrias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Pilosof, Ana Maria Renata. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Industrias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaElsevier2012-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/68282Martínez, Karina Dafne; Pilosof, Ana Maria Renata; Relative viscoelasticity of soy protein hydrolysate and polysaccharides mixtures at cooling conditions analyzed by response surface methodology; Elsevier; Food Hydrocolloids; 26; 1; 1-2012; 318-3220268-005XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0268005X11001536info:eu-repo/semantics/altIdentifier/doi/10.1016/j.foodhyd.2011.04.019info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:06:18Zoai:ri.conicet.gov.ar:11336/68282instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:06:19.007CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Relative viscoelasticity of soy protein hydrolysate and polysaccharides mixtures at cooling conditions analyzed by response surface methodology
title Relative viscoelasticity of soy protein hydrolysate and polysaccharides mixtures at cooling conditions analyzed by response surface methodology
spellingShingle Relative viscoelasticity of soy protein hydrolysate and polysaccharides mixtures at cooling conditions analyzed by response surface methodology
Martínez, Karina Dafne
Gelation
Hydrolysates
Polysaccharides
Response Surface Methodology
Soy Protein
title_short Relative viscoelasticity of soy protein hydrolysate and polysaccharides mixtures at cooling conditions analyzed by response surface methodology
title_full Relative viscoelasticity of soy protein hydrolysate and polysaccharides mixtures at cooling conditions analyzed by response surface methodology
title_fullStr Relative viscoelasticity of soy protein hydrolysate and polysaccharides mixtures at cooling conditions analyzed by response surface methodology
title_full_unstemmed Relative viscoelasticity of soy protein hydrolysate and polysaccharides mixtures at cooling conditions analyzed by response surface methodology
title_sort Relative viscoelasticity of soy protein hydrolysate and polysaccharides mixtures at cooling conditions analyzed by response surface methodology
dc.creator.none.fl_str_mv Martínez, Karina Dafne
Pilosof, Ana Maria Renata
author Martínez, Karina Dafne
author_facet Martínez, Karina Dafne
Pilosof, Ana Maria Renata
author_role author
author2 Pilosof, Ana Maria Renata
author2_role author
dc.subject.none.fl_str_mv Gelation
Hydrolysates
Polysaccharides
Response Surface Methodology
Soy Protein
topic Gelation
Hydrolysates
Polysaccharides
Response Surface Methodology
Soy Protein
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The objective of this work was to study the relative viscoelasticity of soy protein hydrolysate and polysaccharides mixtures at cooling conditions analyzed by response surface methodology.Systems of soy protein hydrolysate (HSP) of 4% degree of hydrolysis, a hydroxypropylmethylcellulose (E4M) and kappa-carrageenan (κC) were made with concentrations conformed by Doehlert matrix as experimental design used.The samples were subjected to dynamic rheological studies with a control stress rheometer, Paar Physica MCR 300, with a program with a heating and a cooling period. At the end of the cooling at 10 °C the relative viscoelasticity (tan. δ) was evaluated from these measurements.To relate the relative viscoelasticity with the components of systems and their concentrations at cooling conditions the response surface methodology was used to obtain this information.The results obtained indicate that E4M promoted in general a decrease of relative viscoelasticity only in the combined systems. When E4M was in combination with HSP, two regions in the plot with the lowest tan. δ can be possible to obtain. One of them was at lower HSP and E4M concentrations and the other at the HSP and E4M highest concentrations. In similar way, when E4M was in combination with κC an increase of relative viscoelasticity was observed at the lowest E4M and κC concentrations and other region was found at the highest E4M and κC concentrations.In other hand, κC would enhance a higher relative viscoelasticity, however, when this polysaccharide was used in combination with hydrolyzed soy protein and/or E4M, a decrease of relative viscoelasticity was observed in the mixed systems.It can be concluded that E4M is the principal component which determines high viscoelastic characteristics in combination with hydrolyzed soy proteins and κC at 10 °C.
Fil: Martínez, Karina Dafne. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Industrias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Pilosof, Ana Maria Renata. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Industrias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description The objective of this work was to study the relative viscoelasticity of soy protein hydrolysate and polysaccharides mixtures at cooling conditions analyzed by response surface methodology.Systems of soy protein hydrolysate (HSP) of 4% degree of hydrolysis, a hydroxypropylmethylcellulose (E4M) and kappa-carrageenan (κC) were made with concentrations conformed by Doehlert matrix as experimental design used.The samples were subjected to dynamic rheological studies with a control stress rheometer, Paar Physica MCR 300, with a program with a heating and a cooling period. At the end of the cooling at 10 °C the relative viscoelasticity (tan. δ) was evaluated from these measurements.To relate the relative viscoelasticity with the components of systems and their concentrations at cooling conditions the response surface methodology was used to obtain this information.The results obtained indicate that E4M promoted in general a decrease of relative viscoelasticity only in the combined systems. When E4M was in combination with HSP, two regions in the plot with the lowest tan. δ can be possible to obtain. One of them was at lower HSP and E4M concentrations and the other at the HSP and E4M highest concentrations. In similar way, when E4M was in combination with κC an increase of relative viscoelasticity was observed at the lowest E4M and κC concentrations and other region was found at the highest E4M and κC concentrations.In other hand, κC would enhance a higher relative viscoelasticity, however, when this polysaccharide was used in combination with hydrolyzed soy protein and/or E4M, a decrease of relative viscoelasticity was observed in the mixed systems.It can be concluded that E4M is the principal component which determines high viscoelastic characteristics in combination with hydrolyzed soy proteins and κC at 10 °C.
publishDate 2012
dc.date.none.fl_str_mv 2012-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/68282
Martínez, Karina Dafne; Pilosof, Ana Maria Renata; Relative viscoelasticity of soy protein hydrolysate and polysaccharides mixtures at cooling conditions analyzed by response surface methodology; Elsevier; Food Hydrocolloids; 26; 1; 1-2012; 318-322
0268-005X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/68282
identifier_str_mv Martínez, Karina Dafne; Pilosof, Ana Maria Renata; Relative viscoelasticity of soy protein hydrolysate and polysaccharides mixtures at cooling conditions analyzed by response surface methodology; Elsevier; Food Hydrocolloids; 26; 1; 1-2012; 318-322
0268-005X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0268005X11001536
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.foodhyd.2011.04.019
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269952857341952
score 13.13397