Stackable independent power switch cell architecture for isolation voltage summation using WBG devices

Autores
Carra, Martin Javier; Tacca, Hernán Emilio; Lipovetzky, José
Año de publicación
2024
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Power electronics is a critical driver of innovation in industries like renewable energy, electric vehicles, and consumer electronics. While silicon (Si) devices have been dominant for five decades, escalating demands for higher power density expose limitations in terms of blocking voltage capacity, operational temperature, and switching frequency. Wide band-gap (WBG) materials, such as silicon carbide (SiC) and gallium nitride (GaN), offer compelling alternatives with low input capacitance, reduced losses, and excellent thermal characteristics. In addition, expanding electrical capabilities involves constructing an array of devices, such as series-connected power MOSFETs. This configuration offers advantages like higher blocking voltage, lower conduction losses, and reduced costs. This paper introduces the design of a fast-switching, stackable switching unit cell (SSUC) utilizing SiC MOSFET devices as power components. The SSUC facilitates the creation of versatile compound switches. To protect the power switch from harmful voltages and current spikes, the design incorporates both an active voltage clamp and a snubber with energy recovery. This feature extends the number of stages that can be connected in series. Experiments with a three-stage compound device, successfully tested at 3 kV, validate the practical applicability and flexibility of this concept.
Fil: Carra, Martin Javier. Universidad de Buenos Aires; Argentina
Fil: Tacca, Hernán Emilio. Universidad de Buenos Aires; Argentina
Fil: Lipovetzky, José. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro; Argentina
Materia
array
series
gan
Sic
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/264734

id CONICETDig_0efe19f145496b0960f6c7a44b0be1c8
oai_identifier_str oai:ri.conicet.gov.ar:11336/264734
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Stackable independent power switch cell architecture for isolation voltage summation using WBG devicesCarra, Martin JavierTacca, Hernán EmilioLipovetzky, JoséarrayseriesganSichttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2Power electronics is a critical driver of innovation in industries like renewable energy, electric vehicles, and consumer electronics. While silicon (Si) devices have been dominant for five decades, escalating demands for higher power density expose limitations in terms of blocking voltage capacity, operational temperature, and switching frequency. Wide band-gap (WBG) materials, such as silicon carbide (SiC) and gallium nitride (GaN), offer compelling alternatives with low input capacitance, reduced losses, and excellent thermal characteristics. In addition, expanding electrical capabilities involves constructing an array of devices, such as series-connected power MOSFETs. This configuration offers advantages like higher blocking voltage, lower conduction losses, and reduced costs. This paper introduces the design of a fast-switching, stackable switching unit cell (SSUC) utilizing SiC MOSFET devices as power components. The SSUC facilitates the creation of versatile compound switches. To protect the power switch from harmful voltages and current spikes, the design incorporates both an active voltage clamp and a snubber with energy recovery. This feature extends the number of stages that can be connected in series. Experiments with a three-stage compound device, successfully tested at 3 kV, validate the practical applicability and flexibility of this concept.Fil: Carra, Martin Javier. Universidad de Buenos Aires; ArgentinaFil: Tacca, Hernán Emilio. Universidad de Buenos Aires; ArgentinaFil: Lipovetzky, José. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro; ArgentinaInstitute of Advanced Engineering and Science2024-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/264734Carra, Martin Javier; Tacca, Hernán Emilio; Lipovetzky, José; Stackable independent power switch cell architecture for isolation voltage summation using WBG devices; Institute of Advanced Engineering and Science; International Journal of Power Electronics and Drive Systems; 15; 4; 12-2024; 2007-20182088-86942722-256XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://ijpeds.iaescore.com/index.php/IJPEDS/article/view/23261info:eu-repo/semantics/altIdentifier/doi/10.11591/ijpeds.v15.i4.pp2007-2018info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:51:53Zoai:ri.conicet.gov.ar:11336/264734instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:51:54.121CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Stackable independent power switch cell architecture for isolation voltage summation using WBG devices
title Stackable independent power switch cell architecture for isolation voltage summation using WBG devices
spellingShingle Stackable independent power switch cell architecture for isolation voltage summation using WBG devices
Carra, Martin Javier
array
series
gan
Sic
title_short Stackable independent power switch cell architecture for isolation voltage summation using WBG devices
title_full Stackable independent power switch cell architecture for isolation voltage summation using WBG devices
title_fullStr Stackable independent power switch cell architecture for isolation voltage summation using WBG devices
title_full_unstemmed Stackable independent power switch cell architecture for isolation voltage summation using WBG devices
title_sort Stackable independent power switch cell architecture for isolation voltage summation using WBG devices
dc.creator.none.fl_str_mv Carra, Martin Javier
Tacca, Hernán Emilio
Lipovetzky, José
author Carra, Martin Javier
author_facet Carra, Martin Javier
Tacca, Hernán Emilio
Lipovetzky, José
author_role author
author2 Tacca, Hernán Emilio
Lipovetzky, José
author2_role author
author
dc.subject.none.fl_str_mv array
series
gan
Sic
topic array
series
gan
Sic
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.2
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Power electronics is a critical driver of innovation in industries like renewable energy, electric vehicles, and consumer electronics. While silicon (Si) devices have been dominant for five decades, escalating demands for higher power density expose limitations in terms of blocking voltage capacity, operational temperature, and switching frequency. Wide band-gap (WBG) materials, such as silicon carbide (SiC) and gallium nitride (GaN), offer compelling alternatives with low input capacitance, reduced losses, and excellent thermal characteristics. In addition, expanding electrical capabilities involves constructing an array of devices, such as series-connected power MOSFETs. This configuration offers advantages like higher blocking voltage, lower conduction losses, and reduced costs. This paper introduces the design of a fast-switching, stackable switching unit cell (SSUC) utilizing SiC MOSFET devices as power components. The SSUC facilitates the creation of versatile compound switches. To protect the power switch from harmful voltages and current spikes, the design incorporates both an active voltage clamp and a snubber with energy recovery. This feature extends the number of stages that can be connected in series. Experiments with a three-stage compound device, successfully tested at 3 kV, validate the practical applicability and flexibility of this concept.
Fil: Carra, Martin Javier. Universidad de Buenos Aires; Argentina
Fil: Tacca, Hernán Emilio. Universidad de Buenos Aires; Argentina
Fil: Lipovetzky, José. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro; Argentina
description Power electronics is a critical driver of innovation in industries like renewable energy, electric vehicles, and consumer electronics. While silicon (Si) devices have been dominant for five decades, escalating demands for higher power density expose limitations in terms of blocking voltage capacity, operational temperature, and switching frequency. Wide band-gap (WBG) materials, such as silicon carbide (SiC) and gallium nitride (GaN), offer compelling alternatives with low input capacitance, reduced losses, and excellent thermal characteristics. In addition, expanding electrical capabilities involves constructing an array of devices, such as series-connected power MOSFETs. This configuration offers advantages like higher blocking voltage, lower conduction losses, and reduced costs. This paper introduces the design of a fast-switching, stackable switching unit cell (SSUC) utilizing SiC MOSFET devices as power components. The SSUC facilitates the creation of versatile compound switches. To protect the power switch from harmful voltages and current spikes, the design incorporates both an active voltage clamp and a snubber with energy recovery. This feature extends the number of stages that can be connected in series. Experiments with a three-stage compound device, successfully tested at 3 kV, validate the practical applicability and flexibility of this concept.
publishDate 2024
dc.date.none.fl_str_mv 2024-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/264734
Carra, Martin Javier; Tacca, Hernán Emilio; Lipovetzky, José; Stackable independent power switch cell architecture for isolation voltage summation using WBG devices; Institute of Advanced Engineering and Science; International Journal of Power Electronics and Drive Systems; 15; 4; 12-2024; 2007-2018
2088-8694
2722-256X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/264734
identifier_str_mv Carra, Martin Javier; Tacca, Hernán Emilio; Lipovetzky, José; Stackable independent power switch cell architecture for isolation voltage summation using WBG devices; Institute of Advanced Engineering and Science; International Journal of Power Electronics and Drive Systems; 15; 4; 12-2024; 2007-2018
2088-8694
2722-256X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://ijpeds.iaescore.com/index.php/IJPEDS/article/view/23261
info:eu-repo/semantics/altIdentifier/doi/10.11591/ijpeds.v15.i4.pp2007-2018
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Institute of Advanced Engineering and Science
publisher.none.fl_str_mv Institute of Advanced Engineering and Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613593916506112
score 13.070432