Stackable independent power switch cell architecture for isolation voltage summation using WBG devices
- Autores
- Carra, Martin Javier; Tacca, Hernán Emilio; Lipovetzky, José
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Power electronics is a critical driver of innovation in industries like renewable energy, electric vehicles, and consumer electronics. While silicon (Si) devices have been dominant for five decades, escalating demands for higher power density expose limitations in terms of blocking voltage capacity, operational temperature, and switching frequency. Wide band-gap (WBG) materials, such as silicon carbide (SiC) and gallium nitride (GaN), offer compelling alternatives with low input capacitance, reduced losses, and excellent thermal characteristics. In addition, expanding electrical capabilities involves constructing an array of devices, such as series-connected power MOSFETs. This configuration offers advantages like higher blocking voltage, lower conduction losses, and reduced costs. This paper introduces the design of a fast-switching, stackable switching unit cell (SSUC) utilizing SiC MOSFET devices as power components. The SSUC facilitates the creation of versatile compound switches. To protect the power switch from harmful voltages and current spikes, the design incorporates both an active voltage clamp and a snubber with energy recovery. This feature extends the number of stages that can be connected in series. Experiments with a three-stage compound device, successfully tested at 3 kV, validate the practical applicability and flexibility of this concept.
Fil: Carra, Martin Javier. Universidad de Buenos Aires; Argentina
Fil: Tacca, Hernán Emilio. Universidad de Buenos Aires; Argentina
Fil: Lipovetzky, José. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro; Argentina - Materia
-
array
series
gan
Sic - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/264734
Ver los metadatos del registro completo
id |
CONICETDig_0efe19f145496b0960f6c7a44b0be1c8 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/264734 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Stackable independent power switch cell architecture for isolation voltage summation using WBG devicesCarra, Martin JavierTacca, Hernán EmilioLipovetzky, JoséarrayseriesganSichttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2Power electronics is a critical driver of innovation in industries like renewable energy, electric vehicles, and consumer electronics. While silicon (Si) devices have been dominant for five decades, escalating demands for higher power density expose limitations in terms of blocking voltage capacity, operational temperature, and switching frequency. Wide band-gap (WBG) materials, such as silicon carbide (SiC) and gallium nitride (GaN), offer compelling alternatives with low input capacitance, reduced losses, and excellent thermal characteristics. In addition, expanding electrical capabilities involves constructing an array of devices, such as series-connected power MOSFETs. This configuration offers advantages like higher blocking voltage, lower conduction losses, and reduced costs. This paper introduces the design of a fast-switching, stackable switching unit cell (SSUC) utilizing SiC MOSFET devices as power components. The SSUC facilitates the creation of versatile compound switches. To protect the power switch from harmful voltages and current spikes, the design incorporates both an active voltage clamp and a snubber with energy recovery. This feature extends the number of stages that can be connected in series. Experiments with a three-stage compound device, successfully tested at 3 kV, validate the practical applicability and flexibility of this concept.Fil: Carra, Martin Javier. Universidad de Buenos Aires; ArgentinaFil: Tacca, Hernán Emilio. Universidad de Buenos Aires; ArgentinaFil: Lipovetzky, José. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro; ArgentinaInstitute of Advanced Engineering and Science2024-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/264734Carra, Martin Javier; Tacca, Hernán Emilio; Lipovetzky, José; Stackable independent power switch cell architecture for isolation voltage summation using WBG devices; Institute of Advanced Engineering and Science; International Journal of Power Electronics and Drive Systems; 15; 4; 12-2024; 2007-20182088-86942722-256XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://ijpeds.iaescore.com/index.php/IJPEDS/article/view/23261info:eu-repo/semantics/altIdentifier/doi/10.11591/ijpeds.v15.i4.pp2007-2018info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:51:53Zoai:ri.conicet.gov.ar:11336/264734instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:51:54.121CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Stackable independent power switch cell architecture for isolation voltage summation using WBG devices |
title |
Stackable independent power switch cell architecture for isolation voltage summation using WBG devices |
spellingShingle |
Stackable independent power switch cell architecture for isolation voltage summation using WBG devices Carra, Martin Javier array series gan Sic |
title_short |
Stackable independent power switch cell architecture for isolation voltage summation using WBG devices |
title_full |
Stackable independent power switch cell architecture for isolation voltage summation using WBG devices |
title_fullStr |
Stackable independent power switch cell architecture for isolation voltage summation using WBG devices |
title_full_unstemmed |
Stackable independent power switch cell architecture for isolation voltage summation using WBG devices |
title_sort |
Stackable independent power switch cell architecture for isolation voltage summation using WBG devices |
dc.creator.none.fl_str_mv |
Carra, Martin Javier Tacca, Hernán Emilio Lipovetzky, José |
author |
Carra, Martin Javier |
author_facet |
Carra, Martin Javier Tacca, Hernán Emilio Lipovetzky, José |
author_role |
author |
author2 |
Tacca, Hernán Emilio Lipovetzky, José |
author2_role |
author author |
dc.subject.none.fl_str_mv |
array series gan Sic |
topic |
array series gan Sic |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Power electronics is a critical driver of innovation in industries like renewable energy, electric vehicles, and consumer electronics. While silicon (Si) devices have been dominant for five decades, escalating demands for higher power density expose limitations in terms of blocking voltage capacity, operational temperature, and switching frequency. Wide band-gap (WBG) materials, such as silicon carbide (SiC) and gallium nitride (GaN), offer compelling alternatives with low input capacitance, reduced losses, and excellent thermal characteristics. In addition, expanding electrical capabilities involves constructing an array of devices, such as series-connected power MOSFETs. This configuration offers advantages like higher blocking voltage, lower conduction losses, and reduced costs. This paper introduces the design of a fast-switching, stackable switching unit cell (SSUC) utilizing SiC MOSFET devices as power components. The SSUC facilitates the creation of versatile compound switches. To protect the power switch from harmful voltages and current spikes, the design incorporates both an active voltage clamp and a snubber with energy recovery. This feature extends the number of stages that can be connected in series. Experiments with a three-stage compound device, successfully tested at 3 kV, validate the practical applicability and flexibility of this concept. Fil: Carra, Martin Javier. Universidad de Buenos Aires; Argentina Fil: Tacca, Hernán Emilio. Universidad de Buenos Aires; Argentina Fil: Lipovetzky, José. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro; Argentina |
description |
Power electronics is a critical driver of innovation in industries like renewable energy, electric vehicles, and consumer electronics. While silicon (Si) devices have been dominant for five decades, escalating demands for higher power density expose limitations in terms of blocking voltage capacity, operational temperature, and switching frequency. Wide band-gap (WBG) materials, such as silicon carbide (SiC) and gallium nitride (GaN), offer compelling alternatives with low input capacitance, reduced losses, and excellent thermal characteristics. In addition, expanding electrical capabilities involves constructing an array of devices, such as series-connected power MOSFETs. This configuration offers advantages like higher blocking voltage, lower conduction losses, and reduced costs. This paper introduces the design of a fast-switching, stackable switching unit cell (SSUC) utilizing SiC MOSFET devices as power components. The SSUC facilitates the creation of versatile compound switches. To protect the power switch from harmful voltages and current spikes, the design incorporates both an active voltage clamp and a snubber with energy recovery. This feature extends the number of stages that can be connected in series. Experiments with a three-stage compound device, successfully tested at 3 kV, validate the practical applicability and flexibility of this concept. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/264734 Carra, Martin Javier; Tacca, Hernán Emilio; Lipovetzky, José; Stackable independent power switch cell architecture for isolation voltage summation using WBG devices; Institute of Advanced Engineering and Science; International Journal of Power Electronics and Drive Systems; 15; 4; 12-2024; 2007-2018 2088-8694 2722-256X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/264734 |
identifier_str_mv |
Carra, Martin Javier; Tacca, Hernán Emilio; Lipovetzky, José; Stackable independent power switch cell architecture for isolation voltage summation using WBG devices; Institute of Advanced Engineering and Science; International Journal of Power Electronics and Drive Systems; 15; 4; 12-2024; 2007-2018 2088-8694 2722-256X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://ijpeds.iaescore.com/index.php/IJPEDS/article/view/23261 info:eu-repo/semantics/altIdentifier/doi/10.11591/ijpeds.v15.i4.pp2007-2018 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Institute of Advanced Engineering and Science |
publisher.none.fl_str_mv |
Institute of Advanced Engineering and Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613593916506112 |
score |
13.070432 |