Determining the Optimal Window Duration to Enhance Emotion Recognition Based on Galvanic Skin Response and Photoplethysmography Signals
- Autores
- Bamonte, Marcos F.; Risk, Marcelo; Herrero, Victor
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Automatic emotion recognition using portable sensors is gaining attention due to its potential use in real-life scenarios. Existing studies have not explored Galvanic Skin Response and Photoplethysmography sensors exclusively for emotion recognition using nonlinear features with machine learning (ML) classifiers such as Random Forest, Support Vector Machine, Gradient Boosting Machine, K-Nearest Neighbor, and Decision Tree. In this study, we proposed a genuine window sensitivity analysis on a continuous annotation dataset to determine the window duration and percentage of overlap that optimize the classification performance using ML algorithms and nonlinear features, namely, Lyapunov Exponent, Approximate Entropy, and Poincaré indices. We found an optimum window duration of 3 s with 50% overlap and achieved accuracies of 0.75 and 0.74 for both arousal and valence, respectively. In addition, we proposed a Strong Labeling Scheme that kept only the extreme values of the labels, which raised the accuracy score to 0.94 for arousal. Under certain conditions mentioned, traditional ML models offer a good compromise between performance and low computational cost. Our results suggest that well-known ML algorithms can still contribute to the field of emotion recognition, provided that window duration, overlap percentage, and nonlinear features are carefully selected.
Fil: Bamonte, Marcos F.. Universidad Austral. Facultad de Ingenieria. Laboratorio de Investigacion Desarrollo y Transferencia. - Comision de Investigaciones Cientificas de la Provincia de Buenos Aires. Laboratorio de Investigacion Desarrollo y Transferencia.; Argentina
Fil: Risk, Marcelo. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Houssay. Instituto de Medicina Traslacional E Ingenieria Biomedica. - Hospital Italiano. Instituto de Medicina Traslacional E Ingenieria Biomedica. - Instituto Universitario Hospital Italiano de Buenos Aires. Instituto de Medicina Traslacional E Ingenieria Biomedica.; Argentina
Fil: Herrero, Victor. Universidad Austral. Facultad de Ingenieria. Laboratorio de Investigacion Desarrollo y Transferencia. - Comision de Investigaciones Cientificas de la Provincia de Buenos Aires. Laboratorio de Investigacion Desarrollo y Transferencia.; Argentina - Materia
-
emotion recognition
machine learning
photoplethysmography
galvanic skin response - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/264285
Ver los metadatos del registro completo
id |
CONICETDig_0eef001e36bb4d37768b54de49fe93c0 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/264285 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Determining the Optimal Window Duration to Enhance Emotion Recognition Based on Galvanic Skin Response and Photoplethysmography SignalsBamonte, Marcos F.Risk, MarceloHerrero, Victoremotion recognitionmachine learning photoplethysmographygalvanic skin responsehttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2Automatic emotion recognition using portable sensors is gaining attention due to its potential use in real-life scenarios. Existing studies have not explored Galvanic Skin Response and Photoplethysmography sensors exclusively for emotion recognition using nonlinear features with machine learning (ML) classifiers such as Random Forest, Support Vector Machine, Gradient Boosting Machine, K-Nearest Neighbor, and Decision Tree. In this study, we proposed a genuine window sensitivity analysis on a continuous annotation dataset to determine the window duration and percentage of overlap that optimize the classification performance using ML algorithms and nonlinear features, namely, Lyapunov Exponent, Approximate Entropy, and Poincaré indices. We found an optimum window duration of 3 s with 50% overlap and achieved accuracies of 0.75 and 0.74 for both arousal and valence, respectively. In addition, we proposed a Strong Labeling Scheme that kept only the extreme values of the labels, which raised the accuracy score to 0.94 for arousal. Under certain conditions mentioned, traditional ML models offer a good compromise between performance and low computational cost. Our results suggest that well-known ML algorithms can still contribute to the field of emotion recognition, provided that window duration, overlap percentage, and nonlinear features are carefully selected.Fil: Bamonte, Marcos F.. Universidad Austral. Facultad de Ingenieria. Laboratorio de Investigacion Desarrollo y Transferencia. - Comision de Investigaciones Cientificas de la Provincia de Buenos Aires. Laboratorio de Investigacion Desarrollo y Transferencia.; ArgentinaFil: Risk, Marcelo. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Houssay. Instituto de Medicina Traslacional E Ingenieria Biomedica. - Hospital Italiano. Instituto de Medicina Traslacional E Ingenieria Biomedica. - Instituto Universitario Hospital Italiano de Buenos Aires. Instituto de Medicina Traslacional E Ingenieria Biomedica.; ArgentinaFil: Herrero, Victor. Universidad Austral. Facultad de Ingenieria. Laboratorio de Investigacion Desarrollo y Transferencia. - Comision de Investigaciones Cientificas de la Provincia de Buenos Aires. Laboratorio de Investigacion Desarrollo y Transferencia.; ArgentinaMDPI2024-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/264285Bamonte, Marcos F.; Risk, Marcelo; Herrero, Victor; Determining the Optimal Window Duration to Enhance Emotion Recognition Based on Galvanic Skin Response and Photoplethysmography Signals; MDPI; Electronics; 13; 16; 8-2024; 1-182079-9292CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2079-9292/13/16/3333info:eu-repo/semantics/altIdentifier/doi/10.3390/electronics13163333info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:21:28Zoai:ri.conicet.gov.ar:11336/264285instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:21:28.913CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Determining the Optimal Window Duration to Enhance Emotion Recognition Based on Galvanic Skin Response and Photoplethysmography Signals |
title |
Determining the Optimal Window Duration to Enhance Emotion Recognition Based on Galvanic Skin Response and Photoplethysmography Signals |
spellingShingle |
Determining the Optimal Window Duration to Enhance Emotion Recognition Based on Galvanic Skin Response and Photoplethysmography Signals Bamonte, Marcos F. emotion recognition machine learning photoplethysmography galvanic skin response |
title_short |
Determining the Optimal Window Duration to Enhance Emotion Recognition Based on Galvanic Skin Response and Photoplethysmography Signals |
title_full |
Determining the Optimal Window Duration to Enhance Emotion Recognition Based on Galvanic Skin Response and Photoplethysmography Signals |
title_fullStr |
Determining the Optimal Window Duration to Enhance Emotion Recognition Based on Galvanic Skin Response and Photoplethysmography Signals |
title_full_unstemmed |
Determining the Optimal Window Duration to Enhance Emotion Recognition Based on Galvanic Skin Response and Photoplethysmography Signals |
title_sort |
Determining the Optimal Window Duration to Enhance Emotion Recognition Based on Galvanic Skin Response and Photoplethysmography Signals |
dc.creator.none.fl_str_mv |
Bamonte, Marcos F. Risk, Marcelo Herrero, Victor |
author |
Bamonte, Marcos F. |
author_facet |
Bamonte, Marcos F. Risk, Marcelo Herrero, Victor |
author_role |
author |
author2 |
Risk, Marcelo Herrero, Victor |
author2_role |
author author |
dc.subject.none.fl_str_mv |
emotion recognition machine learning photoplethysmography galvanic skin response |
topic |
emotion recognition machine learning photoplethysmography galvanic skin response |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Automatic emotion recognition using portable sensors is gaining attention due to its potential use in real-life scenarios. Existing studies have not explored Galvanic Skin Response and Photoplethysmography sensors exclusively for emotion recognition using nonlinear features with machine learning (ML) classifiers such as Random Forest, Support Vector Machine, Gradient Boosting Machine, K-Nearest Neighbor, and Decision Tree. In this study, we proposed a genuine window sensitivity analysis on a continuous annotation dataset to determine the window duration and percentage of overlap that optimize the classification performance using ML algorithms and nonlinear features, namely, Lyapunov Exponent, Approximate Entropy, and Poincaré indices. We found an optimum window duration of 3 s with 50% overlap and achieved accuracies of 0.75 and 0.74 for both arousal and valence, respectively. In addition, we proposed a Strong Labeling Scheme that kept only the extreme values of the labels, which raised the accuracy score to 0.94 for arousal. Under certain conditions mentioned, traditional ML models offer a good compromise between performance and low computational cost. Our results suggest that well-known ML algorithms can still contribute to the field of emotion recognition, provided that window duration, overlap percentage, and nonlinear features are carefully selected. Fil: Bamonte, Marcos F.. Universidad Austral. Facultad de Ingenieria. Laboratorio de Investigacion Desarrollo y Transferencia. - Comision de Investigaciones Cientificas de la Provincia de Buenos Aires. Laboratorio de Investigacion Desarrollo y Transferencia.; Argentina Fil: Risk, Marcelo. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Houssay. Instituto de Medicina Traslacional E Ingenieria Biomedica. - Hospital Italiano. Instituto de Medicina Traslacional E Ingenieria Biomedica. - Instituto Universitario Hospital Italiano de Buenos Aires. Instituto de Medicina Traslacional E Ingenieria Biomedica.; Argentina Fil: Herrero, Victor. Universidad Austral. Facultad de Ingenieria. Laboratorio de Investigacion Desarrollo y Transferencia. - Comision de Investigaciones Cientificas de la Provincia de Buenos Aires. Laboratorio de Investigacion Desarrollo y Transferencia.; Argentina |
description |
Automatic emotion recognition using portable sensors is gaining attention due to its potential use in real-life scenarios. Existing studies have not explored Galvanic Skin Response and Photoplethysmography sensors exclusively for emotion recognition using nonlinear features with machine learning (ML) classifiers such as Random Forest, Support Vector Machine, Gradient Boosting Machine, K-Nearest Neighbor, and Decision Tree. In this study, we proposed a genuine window sensitivity analysis on a continuous annotation dataset to determine the window duration and percentage of overlap that optimize the classification performance using ML algorithms and nonlinear features, namely, Lyapunov Exponent, Approximate Entropy, and Poincaré indices. We found an optimum window duration of 3 s with 50% overlap and achieved accuracies of 0.75 and 0.74 for both arousal and valence, respectively. In addition, we proposed a Strong Labeling Scheme that kept only the extreme values of the labels, which raised the accuracy score to 0.94 for arousal. Under certain conditions mentioned, traditional ML models offer a good compromise between performance and low computational cost. Our results suggest that well-known ML algorithms can still contribute to the field of emotion recognition, provided that window duration, overlap percentage, and nonlinear features are carefully selected. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/264285 Bamonte, Marcos F.; Risk, Marcelo; Herrero, Victor; Determining the Optimal Window Duration to Enhance Emotion Recognition Based on Galvanic Skin Response and Photoplethysmography Signals; MDPI; Electronics; 13; 16; 8-2024; 1-18 2079-9292 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/264285 |
identifier_str_mv |
Bamonte, Marcos F.; Risk, Marcelo; Herrero, Victor; Determining the Optimal Window Duration to Enhance Emotion Recognition Based on Galvanic Skin Response and Photoplethysmography Signals; MDPI; Electronics; 13; 16; 8-2024; 1-18 2079-9292 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2079-9292/13/16/3333 info:eu-repo/semantics/altIdentifier/doi/10.3390/electronics13163333 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
MDPI |
publisher.none.fl_str_mv |
MDPI |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842981179275345920 |
score |
12.48226 |