Silica-collagen bionanocomposites as three-dimensional scaffolds for fibroblast immobilization

Autores
Desimone, Martín Federico; Hélary, Christophe; Rietveld, Ivo B.; Bataille, Isabelle; Mosser, Gervaise; Giraud Guille, Marie Madeleine; Livage, Jacques; Coradin, Thibaud
Año de publicación
2010
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Silica-collagen bionanocomposite hydrogels were obtained by addition of silica nanoparticles to a protein suspension followed by neutralization. Electron microscopy studies indicated that larger silica nanoparticles (80 nm) do not interact strongly with collagen, whereas smaller ones (12 nm) form rosaries along the protein fibers. However, the composite network structurally evolved with time due to the contraction of the cells and the dissolution of the silica nanoparticles. When compared to classical collagen hydrogels, these bionanocomposite materials showed lower surface contraction in the short term (1 week) and higher viability of entrapped cells in the long term (3 weeks). A low level of gelatinase MMP2 enzyme expression was also found after this period. Several proteins involved in the catabolic and anabolic activity of the cells could also be observed by immunodetection techniques. All these data suggest that the bionanocomposite matrices constitute a suitable environment for fibroblast adhesion, proliferation and biological activity and therefore constitute an original three-dimensional environment for in vitro cell culture and in vivo applications, in particular as biological dressings.
Fil: Desimone, Martín Federico. Universite de Paris VI; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Metabolismo del Fármaco. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Metabolismo del Fármaco; Argentina
Fil: Hélary, Christophe. Universite de Paris VI; Francia
Fil: Rietveld, Ivo B.. Université Paris Descartes; Francia
Fil: Bataille, Isabelle. Inserm; Francia. Universite de Paris 13-Nord; Francia
Fil: Mosser, Gervaise. Universite de Paris VI; Francia
Fil: Giraud Guille, Marie Madeleine. Universite de Paris VI; Francia
Fil: Livage, Jacques. Universite de Paris VI; Francia
Fil: Coradin, Thibaud. Universite de Paris VI; Francia
Materia
3-D Culture
Bionanocomposites
Collagen
Fibroblasts
Silica
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/67585

id CONICETDig_0ec7a764be2ac66c519d43095d81e6aa
oai_identifier_str oai:ri.conicet.gov.ar:11336/67585
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Silica-collagen bionanocomposites as three-dimensional scaffolds for fibroblast immobilizationDesimone, Martín FedericoHélary, ChristopheRietveld, Ivo B.Bataille, IsabelleMosser, GervaiseGiraud Guille, Marie MadeleineLivage, JacquesCoradin, Thibaud3-D CultureBionanocompositesCollagenFibroblastsSilicahttps://purl.org/becyt/ford/3.4https://purl.org/becyt/ford/3Silica-collagen bionanocomposite hydrogels were obtained by addition of silica nanoparticles to a protein suspension followed by neutralization. Electron microscopy studies indicated that larger silica nanoparticles (80 nm) do not interact strongly with collagen, whereas smaller ones (12 nm) form rosaries along the protein fibers. However, the composite network structurally evolved with time due to the contraction of the cells and the dissolution of the silica nanoparticles. When compared to classical collagen hydrogels, these bionanocomposite materials showed lower surface contraction in the short term (1 week) and higher viability of entrapped cells in the long term (3 weeks). A low level of gelatinase MMP2 enzyme expression was also found after this period. Several proteins involved in the catabolic and anabolic activity of the cells could also be observed by immunodetection techniques. All these data suggest that the bionanocomposite matrices constitute a suitable environment for fibroblast adhesion, proliferation and biological activity and therefore constitute an original three-dimensional environment for in vitro cell culture and in vivo applications, in particular as biological dressings.Fil: Desimone, Martín Federico. Universite de Paris VI; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Metabolismo del Fármaco. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Metabolismo del Fármaco; ArgentinaFil: Hélary, Christophe. Universite de Paris VI; FranciaFil: Rietveld, Ivo B.. Université Paris Descartes; FranciaFil: Bataille, Isabelle. Inserm; Francia. Universite de Paris 13-Nord; FranciaFil: Mosser, Gervaise. Universite de Paris VI; FranciaFil: Giraud Guille, Marie Madeleine. Universite de Paris VI; FranciaFil: Livage, Jacques. Universite de Paris VI; FranciaFil: Coradin, Thibaud. Universite de Paris VI; FranciaElsevier2010-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/67585Desimone, Martín Federico; Hélary, Christophe; Rietveld, Ivo B.; Bataille, Isabelle; Mosser, Gervaise; et al.; Silica-collagen bionanocomposites as three-dimensional scaffolds for fibroblast immobilization; Elsevier; Acta Biomaterialia; 6; 10; 10-2010; 3998-40041742-7061CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.actbio.2010.05.014info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1742706110002424info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-17T10:46:17Zoai:ri.conicet.gov.ar:11336/67585instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-17 10:46:18.156CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Silica-collagen bionanocomposites as three-dimensional scaffolds for fibroblast immobilization
title Silica-collagen bionanocomposites as three-dimensional scaffolds for fibroblast immobilization
spellingShingle Silica-collagen bionanocomposites as three-dimensional scaffolds for fibroblast immobilization
Desimone, Martín Federico
3-D Culture
Bionanocomposites
Collagen
Fibroblasts
Silica
title_short Silica-collagen bionanocomposites as three-dimensional scaffolds for fibroblast immobilization
title_full Silica-collagen bionanocomposites as three-dimensional scaffolds for fibroblast immobilization
title_fullStr Silica-collagen bionanocomposites as three-dimensional scaffolds for fibroblast immobilization
title_full_unstemmed Silica-collagen bionanocomposites as three-dimensional scaffolds for fibroblast immobilization
title_sort Silica-collagen bionanocomposites as three-dimensional scaffolds for fibroblast immobilization
dc.creator.none.fl_str_mv Desimone, Martín Federico
Hélary, Christophe
Rietveld, Ivo B.
Bataille, Isabelle
Mosser, Gervaise
Giraud Guille, Marie Madeleine
Livage, Jacques
Coradin, Thibaud
author Desimone, Martín Federico
author_facet Desimone, Martín Federico
Hélary, Christophe
Rietveld, Ivo B.
Bataille, Isabelle
Mosser, Gervaise
Giraud Guille, Marie Madeleine
Livage, Jacques
Coradin, Thibaud
author_role author
author2 Hélary, Christophe
Rietveld, Ivo B.
Bataille, Isabelle
Mosser, Gervaise
Giraud Guille, Marie Madeleine
Livage, Jacques
Coradin, Thibaud
author2_role author
author
author
author
author
author
author
dc.subject.none.fl_str_mv 3-D Culture
Bionanocomposites
Collagen
Fibroblasts
Silica
topic 3-D Culture
Bionanocomposites
Collagen
Fibroblasts
Silica
purl_subject.fl_str_mv https://purl.org/becyt/ford/3.4
https://purl.org/becyt/ford/3
dc.description.none.fl_txt_mv Silica-collagen bionanocomposite hydrogels were obtained by addition of silica nanoparticles to a protein suspension followed by neutralization. Electron microscopy studies indicated that larger silica nanoparticles (80 nm) do not interact strongly with collagen, whereas smaller ones (12 nm) form rosaries along the protein fibers. However, the composite network structurally evolved with time due to the contraction of the cells and the dissolution of the silica nanoparticles. When compared to classical collagen hydrogels, these bionanocomposite materials showed lower surface contraction in the short term (1 week) and higher viability of entrapped cells in the long term (3 weeks). A low level of gelatinase MMP2 enzyme expression was also found after this period. Several proteins involved in the catabolic and anabolic activity of the cells could also be observed by immunodetection techniques. All these data suggest that the bionanocomposite matrices constitute a suitable environment for fibroblast adhesion, proliferation and biological activity and therefore constitute an original three-dimensional environment for in vitro cell culture and in vivo applications, in particular as biological dressings.
Fil: Desimone, Martín Federico. Universite de Paris VI; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Metabolismo del Fármaco. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Metabolismo del Fármaco; Argentina
Fil: Hélary, Christophe. Universite de Paris VI; Francia
Fil: Rietveld, Ivo B.. Université Paris Descartes; Francia
Fil: Bataille, Isabelle. Inserm; Francia. Universite de Paris 13-Nord; Francia
Fil: Mosser, Gervaise. Universite de Paris VI; Francia
Fil: Giraud Guille, Marie Madeleine. Universite de Paris VI; Francia
Fil: Livage, Jacques. Universite de Paris VI; Francia
Fil: Coradin, Thibaud. Universite de Paris VI; Francia
description Silica-collagen bionanocomposite hydrogels were obtained by addition of silica nanoparticles to a protein suspension followed by neutralization. Electron microscopy studies indicated that larger silica nanoparticles (80 nm) do not interact strongly with collagen, whereas smaller ones (12 nm) form rosaries along the protein fibers. However, the composite network structurally evolved with time due to the contraction of the cells and the dissolution of the silica nanoparticles. When compared to classical collagen hydrogels, these bionanocomposite materials showed lower surface contraction in the short term (1 week) and higher viability of entrapped cells in the long term (3 weeks). A low level of gelatinase MMP2 enzyme expression was also found after this period. Several proteins involved in the catabolic and anabolic activity of the cells could also be observed by immunodetection techniques. All these data suggest that the bionanocomposite matrices constitute a suitable environment for fibroblast adhesion, proliferation and biological activity and therefore constitute an original three-dimensional environment for in vitro cell culture and in vivo applications, in particular as biological dressings.
publishDate 2010
dc.date.none.fl_str_mv 2010-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/67585
Desimone, Martín Federico; Hélary, Christophe; Rietveld, Ivo B.; Bataille, Isabelle; Mosser, Gervaise; et al.; Silica-collagen bionanocomposites as three-dimensional scaffolds for fibroblast immobilization; Elsevier; Acta Biomaterialia; 6; 10; 10-2010; 3998-4004
1742-7061
CONICET Digital
CONICET
url http://hdl.handle.net/11336/67585
identifier_str_mv Desimone, Martín Federico; Hélary, Christophe; Rietveld, Ivo B.; Bataille, Isabelle; Mosser, Gervaise; et al.; Silica-collagen bionanocomposites as three-dimensional scaffolds for fibroblast immobilization; Elsevier; Acta Biomaterialia; 6; 10; 10-2010; 3998-4004
1742-7061
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.actbio.2010.05.014
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1742706110002424
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1843606029138395136
score 13.001348