Silica-collagen bionanocomposites as three-dimensional scaffolds for fibroblast immobilization
- Autores
- Desimone, Martín Federico; Hélary, Christophe; Rietveld, Ivo B.; Bataille, Isabelle; Mosser, Gervaise; Giraud Guille, Marie Madeleine; Livage, Jacques; Coradin, Thibaud
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Silica-collagen bionanocomposite hydrogels were obtained by addition of silica nanoparticles to a protein suspension followed by neutralization. Electron microscopy studies indicated that larger silica nanoparticles (80 nm) do not interact strongly with collagen, whereas smaller ones (12 nm) form rosaries along the protein fibers. However, the composite network structurally evolved with time due to the contraction of the cells and the dissolution of the silica nanoparticles. When compared to classical collagen hydrogels, these bionanocomposite materials showed lower surface contraction in the short term (1 week) and higher viability of entrapped cells in the long term (3 weeks). A low level of gelatinase MMP2 enzyme expression was also found after this period. Several proteins involved in the catabolic and anabolic activity of the cells could also be observed by immunodetection techniques. All these data suggest that the bionanocomposite matrices constitute a suitable environment for fibroblast adhesion, proliferation and biological activity and therefore constitute an original three-dimensional environment for in vitro cell culture and in vivo applications, in particular as biological dressings.
Fil: Desimone, Martín Federico. Universite de Paris VI; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Metabolismo del Fármaco. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Metabolismo del Fármaco; Argentina
Fil: Hélary, Christophe. Universite de Paris VI; Francia
Fil: Rietveld, Ivo B.. Université Paris Descartes; Francia
Fil: Bataille, Isabelle. Inserm; Francia. Universite de Paris 13-Nord; Francia
Fil: Mosser, Gervaise. Universite de Paris VI; Francia
Fil: Giraud Guille, Marie Madeleine. Universite de Paris VI; Francia
Fil: Livage, Jacques. Universite de Paris VI; Francia
Fil: Coradin, Thibaud. Universite de Paris VI; Francia - Materia
-
3-D Culture
Bionanocomposites
Collagen
Fibroblasts
Silica - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/67585
Ver los metadatos del registro completo
id |
CONICETDig_0ec7a764be2ac66c519d43095d81e6aa |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/67585 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Silica-collagen bionanocomposites as three-dimensional scaffolds for fibroblast immobilizationDesimone, Martín FedericoHélary, ChristopheRietveld, Ivo B.Bataille, IsabelleMosser, GervaiseGiraud Guille, Marie MadeleineLivage, JacquesCoradin, Thibaud3-D CultureBionanocompositesCollagenFibroblastsSilicahttps://purl.org/becyt/ford/3.4https://purl.org/becyt/ford/3Silica-collagen bionanocomposite hydrogels were obtained by addition of silica nanoparticles to a protein suspension followed by neutralization. Electron microscopy studies indicated that larger silica nanoparticles (80 nm) do not interact strongly with collagen, whereas smaller ones (12 nm) form rosaries along the protein fibers. However, the composite network structurally evolved with time due to the contraction of the cells and the dissolution of the silica nanoparticles. When compared to classical collagen hydrogels, these bionanocomposite materials showed lower surface contraction in the short term (1 week) and higher viability of entrapped cells in the long term (3 weeks). A low level of gelatinase MMP2 enzyme expression was also found after this period. Several proteins involved in the catabolic and anabolic activity of the cells could also be observed by immunodetection techniques. All these data suggest that the bionanocomposite matrices constitute a suitable environment for fibroblast adhesion, proliferation and biological activity and therefore constitute an original three-dimensional environment for in vitro cell culture and in vivo applications, in particular as biological dressings.Fil: Desimone, Martín Federico. Universite de Paris VI; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Metabolismo del Fármaco. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Metabolismo del Fármaco; ArgentinaFil: Hélary, Christophe. Universite de Paris VI; FranciaFil: Rietveld, Ivo B.. Université Paris Descartes; FranciaFil: Bataille, Isabelle. Inserm; Francia. Universite de Paris 13-Nord; FranciaFil: Mosser, Gervaise. Universite de Paris VI; FranciaFil: Giraud Guille, Marie Madeleine. Universite de Paris VI; FranciaFil: Livage, Jacques. Universite de Paris VI; FranciaFil: Coradin, Thibaud. Universite de Paris VI; FranciaElsevier2010-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/67585Desimone, Martín Federico; Hélary, Christophe; Rietveld, Ivo B.; Bataille, Isabelle; Mosser, Gervaise; et al.; Silica-collagen bionanocomposites as three-dimensional scaffolds for fibroblast immobilization; Elsevier; Acta Biomaterialia; 6; 10; 10-2010; 3998-40041742-7061CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.actbio.2010.05.014info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1742706110002424info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-17T10:46:17Zoai:ri.conicet.gov.ar:11336/67585instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-17 10:46:18.156CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Silica-collagen bionanocomposites as three-dimensional scaffolds for fibroblast immobilization |
title |
Silica-collagen bionanocomposites as three-dimensional scaffolds for fibroblast immobilization |
spellingShingle |
Silica-collagen bionanocomposites as three-dimensional scaffolds for fibroblast immobilization Desimone, Martín Federico 3-D Culture Bionanocomposites Collagen Fibroblasts Silica |
title_short |
Silica-collagen bionanocomposites as three-dimensional scaffolds for fibroblast immobilization |
title_full |
Silica-collagen bionanocomposites as three-dimensional scaffolds for fibroblast immobilization |
title_fullStr |
Silica-collagen bionanocomposites as three-dimensional scaffolds for fibroblast immobilization |
title_full_unstemmed |
Silica-collagen bionanocomposites as three-dimensional scaffolds for fibroblast immobilization |
title_sort |
Silica-collagen bionanocomposites as three-dimensional scaffolds for fibroblast immobilization |
dc.creator.none.fl_str_mv |
Desimone, Martín Federico Hélary, Christophe Rietveld, Ivo B. Bataille, Isabelle Mosser, Gervaise Giraud Guille, Marie Madeleine Livage, Jacques Coradin, Thibaud |
author |
Desimone, Martín Federico |
author_facet |
Desimone, Martín Federico Hélary, Christophe Rietveld, Ivo B. Bataille, Isabelle Mosser, Gervaise Giraud Guille, Marie Madeleine Livage, Jacques Coradin, Thibaud |
author_role |
author |
author2 |
Hélary, Christophe Rietveld, Ivo B. Bataille, Isabelle Mosser, Gervaise Giraud Guille, Marie Madeleine Livage, Jacques Coradin, Thibaud |
author2_role |
author author author author author author author |
dc.subject.none.fl_str_mv |
3-D Culture Bionanocomposites Collagen Fibroblasts Silica |
topic |
3-D Culture Bionanocomposites Collagen Fibroblasts Silica |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/3.4 https://purl.org/becyt/ford/3 |
dc.description.none.fl_txt_mv |
Silica-collagen bionanocomposite hydrogels were obtained by addition of silica nanoparticles to a protein suspension followed by neutralization. Electron microscopy studies indicated that larger silica nanoparticles (80 nm) do not interact strongly with collagen, whereas smaller ones (12 nm) form rosaries along the protein fibers. However, the composite network structurally evolved with time due to the contraction of the cells and the dissolution of the silica nanoparticles. When compared to classical collagen hydrogels, these bionanocomposite materials showed lower surface contraction in the short term (1 week) and higher viability of entrapped cells in the long term (3 weeks). A low level of gelatinase MMP2 enzyme expression was also found after this period. Several proteins involved in the catabolic and anabolic activity of the cells could also be observed by immunodetection techniques. All these data suggest that the bionanocomposite matrices constitute a suitable environment for fibroblast adhesion, proliferation and biological activity and therefore constitute an original three-dimensional environment for in vitro cell culture and in vivo applications, in particular as biological dressings. Fil: Desimone, Martín Federico. Universite de Paris VI; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Metabolismo del Fármaco. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Metabolismo del Fármaco; Argentina Fil: Hélary, Christophe. Universite de Paris VI; Francia Fil: Rietveld, Ivo B.. Université Paris Descartes; Francia Fil: Bataille, Isabelle. Inserm; Francia. Universite de Paris 13-Nord; Francia Fil: Mosser, Gervaise. Universite de Paris VI; Francia Fil: Giraud Guille, Marie Madeleine. Universite de Paris VI; Francia Fil: Livage, Jacques. Universite de Paris VI; Francia Fil: Coradin, Thibaud. Universite de Paris VI; Francia |
description |
Silica-collagen bionanocomposite hydrogels were obtained by addition of silica nanoparticles to a protein suspension followed by neutralization. Electron microscopy studies indicated that larger silica nanoparticles (80 nm) do not interact strongly with collagen, whereas smaller ones (12 nm) form rosaries along the protein fibers. However, the composite network structurally evolved with time due to the contraction of the cells and the dissolution of the silica nanoparticles. When compared to classical collagen hydrogels, these bionanocomposite materials showed lower surface contraction in the short term (1 week) and higher viability of entrapped cells in the long term (3 weeks). A low level of gelatinase MMP2 enzyme expression was also found after this period. Several proteins involved in the catabolic and anabolic activity of the cells could also be observed by immunodetection techniques. All these data suggest that the bionanocomposite matrices constitute a suitable environment for fibroblast adhesion, proliferation and biological activity and therefore constitute an original three-dimensional environment for in vitro cell culture and in vivo applications, in particular as biological dressings. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/67585 Desimone, Martín Federico; Hélary, Christophe; Rietveld, Ivo B.; Bataille, Isabelle; Mosser, Gervaise; et al.; Silica-collagen bionanocomposites as three-dimensional scaffolds for fibroblast immobilization; Elsevier; Acta Biomaterialia; 6; 10; 10-2010; 3998-4004 1742-7061 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/67585 |
identifier_str_mv |
Desimone, Martín Federico; Hélary, Christophe; Rietveld, Ivo B.; Bataille, Isabelle; Mosser, Gervaise; et al.; Silica-collagen bionanocomposites as three-dimensional scaffolds for fibroblast immobilization; Elsevier; Acta Biomaterialia; 6; 10; 10-2010; 3998-4004 1742-7061 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.actbio.2010.05.014 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1742706110002424 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1843606029138395136 |
score |
13.001348 |