Frontal operators in distributive lattices with a generalized implication
- Autores
- Celani, Sergio Arturo; San Martín, Hernán Javier
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We introduce a family of extensions of bounded distributive lattices. These extensions are obtained by adding two operations: an internal unary operation, and a function (called generalized implication) that maps pair of elements to ideals of the lattice. A bounded distributive lattice with a generalized implication is called gi-lattice in [4]. The main goal of this paper is to introduce and study the category of frontal gi-lattices (and some subcategories of it). This category can be seen as a generalization of the category of frontal weak Heyting algebras ([9]). In particular, we study the case of frontal gi-lattices where the generalized implication is defined as the annihilator ([11], [15]). We give a Priestley’s style duality for each one of the new classes of structures considered.
Fil: Celani, Sergio Arturo. Universidad Nacional del Centro de la Provincia de Buenos Aires.Facultad de Ciencias Exactas; Argentina
Fil: San Martín, Hernán Javier. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Distributive Lattices
Generalized Implication
Frontal Operators
Priestley Duality - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/45974
Ver los metadatos del registro completo
id |
CONICETDig_724d63255822f01671fd781be0c25564 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/45974 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Frontal operators in distributive lattices with a generalized implicationCelani, Sergio ArturoSan Martín, Hernán JavierDistributive LatticesGeneralized ImplicationFrontal OperatorsPriestley Dualityhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We introduce a family of extensions of bounded distributive lattices. These extensions are obtained by adding two operations: an internal unary operation, and a function (called generalized implication) that maps pair of elements to ideals of the lattice. A bounded distributive lattice with a generalized implication is called gi-lattice in [4]. The main goal of this paper is to introduce and study the category of frontal gi-lattices (and some subcategories of it). This category can be seen as a generalization of the category of frontal weak Heyting algebras ([9]). In particular, we study the case of frontal gi-lattices where the generalized implication is defined as the annihilator ([11], [15]). We give a Priestley’s style duality for each one of the new classes of structures considered.Fil: Celani, Sergio Arturo. Universidad Nacional del Centro de la Provincia de Buenos Aires.Facultad de Ciencias Exactas; ArgentinaFil: San Martín, Hernán Javier. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaWorldScientific Open Access2015-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/45974Celani, Sergio Arturo; San Martín, Hernán Javier; Frontal operators in distributive lattices with a generalized implication; WorldScientific Open Access; Asian-European Journal of Mathematics; 8; 3; 9-2015; 1-221793-7183CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1142/S1793557115500394info:eu-repo/semantics/altIdentifier/url/https://www.worldscientific.com/doi/abs/10.1142/S1793557115500394info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:45:31Zoai:ri.conicet.gov.ar:11336/45974instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:45:31.666CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Frontal operators in distributive lattices with a generalized implication |
title |
Frontal operators in distributive lattices with a generalized implication |
spellingShingle |
Frontal operators in distributive lattices with a generalized implication Celani, Sergio Arturo Distributive Lattices Generalized Implication Frontal Operators Priestley Duality |
title_short |
Frontal operators in distributive lattices with a generalized implication |
title_full |
Frontal operators in distributive lattices with a generalized implication |
title_fullStr |
Frontal operators in distributive lattices with a generalized implication |
title_full_unstemmed |
Frontal operators in distributive lattices with a generalized implication |
title_sort |
Frontal operators in distributive lattices with a generalized implication |
dc.creator.none.fl_str_mv |
Celani, Sergio Arturo San Martín, Hernán Javier |
author |
Celani, Sergio Arturo |
author_facet |
Celani, Sergio Arturo San Martín, Hernán Javier |
author_role |
author |
author2 |
San Martín, Hernán Javier |
author2_role |
author |
dc.subject.none.fl_str_mv |
Distributive Lattices Generalized Implication Frontal Operators Priestley Duality |
topic |
Distributive Lattices Generalized Implication Frontal Operators Priestley Duality |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We introduce a family of extensions of bounded distributive lattices. These extensions are obtained by adding two operations: an internal unary operation, and a function (called generalized implication) that maps pair of elements to ideals of the lattice. A bounded distributive lattice with a generalized implication is called gi-lattice in [4]. The main goal of this paper is to introduce and study the category of frontal gi-lattices (and some subcategories of it). This category can be seen as a generalization of the category of frontal weak Heyting algebras ([9]). In particular, we study the case of frontal gi-lattices where the generalized implication is defined as the annihilator ([11], [15]). We give a Priestley’s style duality for each one of the new classes of structures considered. Fil: Celani, Sergio Arturo. Universidad Nacional del Centro de la Provincia de Buenos Aires.Facultad de Ciencias Exactas; Argentina Fil: San Martín, Hernán Javier. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
We introduce a family of extensions of bounded distributive lattices. These extensions are obtained by adding two operations: an internal unary operation, and a function (called generalized implication) that maps pair of elements to ideals of the lattice. A bounded distributive lattice with a generalized implication is called gi-lattice in [4]. The main goal of this paper is to introduce and study the category of frontal gi-lattices (and some subcategories of it). This category can be seen as a generalization of the category of frontal weak Heyting algebras ([9]). In particular, we study the case of frontal gi-lattices where the generalized implication is defined as the annihilator ([11], [15]). We give a Priestley’s style duality for each one of the new classes of structures considered. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/45974 Celani, Sergio Arturo; San Martín, Hernán Javier; Frontal operators in distributive lattices with a generalized implication; WorldScientific Open Access; Asian-European Journal of Mathematics; 8; 3; 9-2015; 1-22 1793-7183 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/45974 |
identifier_str_mv |
Celani, Sergio Arturo; San Martín, Hernán Javier; Frontal operators in distributive lattices with a generalized implication; WorldScientific Open Access; Asian-European Journal of Mathematics; 8; 3; 9-2015; 1-22 1793-7183 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1142/S1793557115500394 info:eu-repo/semantics/altIdentifier/url/https://www.worldscientific.com/doi/abs/10.1142/S1793557115500394 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
WorldScientific Open Access |
publisher.none.fl_str_mv |
WorldScientific Open Access |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268736417955840 |
score |
13.13397 |