Finite dimension of the ion pathway networks in conducting glasses

Autores
Sanchez Varretti, Fabricio Orlando; Iguain, Jose Luis; Alonso, Juan M.; Frechero, Marisa Alejandra
Año de publicación
2024
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In disordered materials, the ordinary understanding is that charge carriers tend to occupy energetically favorable sites known as ion-conducting channels. Many studies have revealed that the inherent fractal properties of such pathways lead to a sub-diffusive behavior. The linearity or branching of these pathways is crucial for determining how the charge carriers move. It can be thought that as the space dimensionality decreases, the average distance between the highest energy barriers along the conduction paths increases. In this study the finite dimension of those pathways is computed using an extended version of the classical Hausdorff dimension. Also, the Arrhenius behavior of the most mobile lithium ions is proved, confirming that such are responsible for conductivity behavior. The lithium ions mobility behavior in response to temperature changes and the finite dimension allowed to identify the ion diffusion regions fractal features. The reported results demonstrate that as the temperature increases the conducting channels become broadener, facilitating the transfer of electrical charge through the glassy matrix, below the transition temperature. The pathways behavior confirms the increase of the ionic conductivity when the temperature increases as it is experimentally observed.
Fil: Sanchez Varretti, Fabricio Orlando. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - San Luis. Instituto de Fisica Aplicada "dr. Jorge Andres Zgrablich". Grupo Vinculado Bionanotecnologia y Sistemas Complejos | Universidad Nacional de San Luis. Facultad de Cs.fisico Matematicas y Naturales. Instituto de Fisica Aplicada "dr. Jorge Andres Zgrablich". Grupo Vinculado Bionanotecnologia y Sistemas Complejos. - Universidad Tecnologica Nacional. Facultad Reg.san Rafael. Grupo Vinculado Bionanotecnologia y Sistemas Complejos.; Argentina
Fil: Iguain, Jose Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata; Argentina
Fil: Alonso, Juan M.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina
Fil: Frechero, Marisa Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina
Materia
FINITE DIMENSION
GLASS
IONS MOBILITY
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/257227

id CONICETDig_0dcfb3395a1f10842a511f7c07caa7b9
oai_identifier_str oai:ri.conicet.gov.ar:11336/257227
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Finite dimension of the ion pathway networks in conducting glassesSanchez Varretti, Fabricio OrlandoIguain, Jose LuisAlonso, Juan M.Frechero, Marisa AlejandraFINITE DIMENSIONGLASSIONS MOBILITYhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1In disordered materials, the ordinary understanding is that charge carriers tend to occupy energetically favorable sites known as ion-conducting channels. Many studies have revealed that the inherent fractal properties of such pathways lead to a sub-diffusive behavior. The linearity or branching of these pathways is crucial for determining how the charge carriers move. It can be thought that as the space dimensionality decreases, the average distance between the highest energy barriers along the conduction paths increases. In this study the finite dimension of those pathways is computed using an extended version of the classical Hausdorff dimension. Also, the Arrhenius behavior of the most mobile lithium ions is proved, confirming that such are responsible for conductivity behavior. The lithium ions mobility behavior in response to temperature changes and the finite dimension allowed to identify the ion diffusion regions fractal features. The reported results demonstrate that as the temperature increases the conducting channels become broadener, facilitating the transfer of electrical charge through the glassy matrix, below the transition temperature. The pathways behavior confirms the increase of the ionic conductivity when the temperature increases as it is experimentally observed.Fil: Sanchez Varretti, Fabricio Orlando. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - San Luis. Instituto de Fisica Aplicada "dr. Jorge Andres Zgrablich". Grupo Vinculado Bionanotecnologia y Sistemas Complejos | Universidad Nacional de San Luis. Facultad de Cs.fisico Matematicas y Naturales. Instituto de Fisica Aplicada "dr. Jorge Andres Zgrablich". Grupo Vinculado Bionanotecnologia y Sistemas Complejos. - Universidad Tecnologica Nacional. Facultad Reg.san Rafael. Grupo Vinculado Bionanotecnologia y Sistemas Complejos.; ArgentinaFil: Iguain, Jose Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata; ArgentinaFil: Alonso, Juan M.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; ArgentinaFil: Frechero, Marisa Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; ArgentinaIOP Publishing2024-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/257227Sanchez Varretti, Fabricio Orlando; Iguain, Jose Luis; Alonso, Juan M.; Frechero, Marisa Alejandra; Finite dimension of the ion pathway networks in conducting glasses; IOP Publishing; Nano Express; 5; 2; 5-2024; 1-102632-959XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/2632-959X/ad472einfo:eu-repo/semantics/altIdentifier/doi/10.1088/2632-959X/ad472einfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:36:36Zoai:ri.conicet.gov.ar:11336/257227instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:36:36.78CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Finite dimension of the ion pathway networks in conducting glasses
title Finite dimension of the ion pathway networks in conducting glasses
spellingShingle Finite dimension of the ion pathway networks in conducting glasses
Sanchez Varretti, Fabricio Orlando
FINITE DIMENSION
GLASS
IONS MOBILITY
title_short Finite dimension of the ion pathway networks in conducting glasses
title_full Finite dimension of the ion pathway networks in conducting glasses
title_fullStr Finite dimension of the ion pathway networks in conducting glasses
title_full_unstemmed Finite dimension of the ion pathway networks in conducting glasses
title_sort Finite dimension of the ion pathway networks in conducting glasses
dc.creator.none.fl_str_mv Sanchez Varretti, Fabricio Orlando
Iguain, Jose Luis
Alonso, Juan M.
Frechero, Marisa Alejandra
author Sanchez Varretti, Fabricio Orlando
author_facet Sanchez Varretti, Fabricio Orlando
Iguain, Jose Luis
Alonso, Juan M.
Frechero, Marisa Alejandra
author_role author
author2 Iguain, Jose Luis
Alonso, Juan M.
Frechero, Marisa Alejandra
author2_role author
author
author
dc.subject.none.fl_str_mv FINITE DIMENSION
GLASS
IONS MOBILITY
topic FINITE DIMENSION
GLASS
IONS MOBILITY
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In disordered materials, the ordinary understanding is that charge carriers tend to occupy energetically favorable sites known as ion-conducting channels. Many studies have revealed that the inherent fractal properties of such pathways lead to a sub-diffusive behavior. The linearity or branching of these pathways is crucial for determining how the charge carriers move. It can be thought that as the space dimensionality decreases, the average distance between the highest energy barriers along the conduction paths increases. In this study the finite dimension of those pathways is computed using an extended version of the classical Hausdorff dimension. Also, the Arrhenius behavior of the most mobile lithium ions is proved, confirming that such are responsible for conductivity behavior. The lithium ions mobility behavior in response to temperature changes and the finite dimension allowed to identify the ion diffusion regions fractal features. The reported results demonstrate that as the temperature increases the conducting channels become broadener, facilitating the transfer of electrical charge through the glassy matrix, below the transition temperature. The pathways behavior confirms the increase of the ionic conductivity when the temperature increases as it is experimentally observed.
Fil: Sanchez Varretti, Fabricio Orlando. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - San Luis. Instituto de Fisica Aplicada "dr. Jorge Andres Zgrablich". Grupo Vinculado Bionanotecnologia y Sistemas Complejos | Universidad Nacional de San Luis. Facultad de Cs.fisico Matematicas y Naturales. Instituto de Fisica Aplicada "dr. Jorge Andres Zgrablich". Grupo Vinculado Bionanotecnologia y Sistemas Complejos. - Universidad Tecnologica Nacional. Facultad Reg.san Rafael. Grupo Vinculado Bionanotecnologia y Sistemas Complejos.; Argentina
Fil: Iguain, Jose Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata; Argentina
Fil: Alonso, Juan M.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina
Fil: Frechero, Marisa Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina
description In disordered materials, the ordinary understanding is that charge carriers tend to occupy energetically favorable sites known as ion-conducting channels. Many studies have revealed that the inherent fractal properties of such pathways lead to a sub-diffusive behavior. The linearity or branching of these pathways is crucial for determining how the charge carriers move. It can be thought that as the space dimensionality decreases, the average distance between the highest energy barriers along the conduction paths increases. In this study the finite dimension of those pathways is computed using an extended version of the classical Hausdorff dimension. Also, the Arrhenius behavior of the most mobile lithium ions is proved, confirming that such are responsible for conductivity behavior. The lithium ions mobility behavior in response to temperature changes and the finite dimension allowed to identify the ion diffusion regions fractal features. The reported results demonstrate that as the temperature increases the conducting channels become broadener, facilitating the transfer of electrical charge through the glassy matrix, below the transition temperature. The pathways behavior confirms the increase of the ionic conductivity when the temperature increases as it is experimentally observed.
publishDate 2024
dc.date.none.fl_str_mv 2024-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/257227
Sanchez Varretti, Fabricio Orlando; Iguain, Jose Luis; Alonso, Juan M.; Frechero, Marisa Alejandra; Finite dimension of the ion pathway networks in conducting glasses; IOP Publishing; Nano Express; 5; 2; 5-2024; 1-10
2632-959X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/257227
identifier_str_mv Sanchez Varretti, Fabricio Orlando; Iguain, Jose Luis; Alonso, Juan M.; Frechero, Marisa Alejandra; Finite dimension of the ion pathway networks in conducting glasses; IOP Publishing; Nano Express; 5; 2; 5-2024; 1-10
2632-959X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/2632-959X/ad472e
info:eu-repo/semantics/altIdentifier/doi/10.1088/2632-959X/ad472e
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv IOP Publishing
publisher.none.fl_str_mv IOP Publishing
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614386931466240
score 13.070432