Riemannian metrics on an infinite dimensional symplectic group
- Autores
- Lopez Galvan, Alberto Manuel
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The aim of this paper is the geometric study of the symplectic operators which are a perturbation of the identity by a Hilbert-Schmidt operator. This subgroup of the symplectic group was introduced in Pierre de la Harpe´s classical book of Banach-Lie groups. Throughout this paper we will endow the tangent spaces with different Riemannian metrics. We will use the minimal curves of the unitary group and the positive invertible operators to compare the length of the geodesic curves in each case. Moreover we will study the completeness of the symplectic group with the geodesic distance.
Fil: Lopez Galvan, Alberto Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina - Materia
-
Symplectic group
Riemann?Hilbert metric
Left-invariant metric
Complete metric space - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/18949
Ver los metadatos del registro completo
id |
CONICETDig_0c2a7f2e1aeb0b4c5858fa7470fac9fc |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/18949 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Riemannian metrics on an infinite dimensional symplectic groupLopez Galvan, Alberto ManuelSymplectic groupRiemann?Hilbert metricLeft-invariant metricComplete metric spacehttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The aim of this paper is the geometric study of the symplectic operators which are a perturbation of the identity by a Hilbert-Schmidt operator. This subgroup of the symplectic group was introduced in Pierre de la Harpe´s classical book of Banach-Lie groups. Throughout this paper we will endow the tangent spaces with different Riemannian metrics. We will use the minimal curves of the unitary group and the positive invertible operators to compare the length of the geodesic curves in each case. Moreover we will study the completeness of the symplectic group with the geodesic distance.Fil: Lopez Galvan, Alberto Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; ArgentinaElsevier2015-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/18949Lopez Galvan, Alberto Manuel; Riemannian metrics on an infinite dimensional symplectic group; Elsevier; Journal Of Mathematical Analysis And Applications; 428; 2; 3-2015; 1070-10840022-247XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0022247X15002760info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2015.03.051info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:45:54Zoai:ri.conicet.gov.ar:11336/18949instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:45:55.01CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Riemannian metrics on an infinite dimensional symplectic group |
title |
Riemannian metrics on an infinite dimensional symplectic group |
spellingShingle |
Riemannian metrics on an infinite dimensional symplectic group Lopez Galvan, Alberto Manuel Symplectic group Riemann?Hilbert metric Left-invariant metric Complete metric space |
title_short |
Riemannian metrics on an infinite dimensional symplectic group |
title_full |
Riemannian metrics on an infinite dimensional symplectic group |
title_fullStr |
Riemannian metrics on an infinite dimensional symplectic group |
title_full_unstemmed |
Riemannian metrics on an infinite dimensional symplectic group |
title_sort |
Riemannian metrics on an infinite dimensional symplectic group |
dc.creator.none.fl_str_mv |
Lopez Galvan, Alberto Manuel |
author |
Lopez Galvan, Alberto Manuel |
author_facet |
Lopez Galvan, Alberto Manuel |
author_role |
author |
dc.subject.none.fl_str_mv |
Symplectic group Riemann?Hilbert metric Left-invariant metric Complete metric space |
topic |
Symplectic group Riemann?Hilbert metric Left-invariant metric Complete metric space |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The aim of this paper is the geometric study of the symplectic operators which are a perturbation of the identity by a Hilbert-Schmidt operator. This subgroup of the symplectic group was introduced in Pierre de la Harpe´s classical book of Banach-Lie groups. Throughout this paper we will endow the tangent spaces with different Riemannian metrics. We will use the minimal curves of the unitary group and the positive invertible operators to compare the length of the geodesic curves in each case. Moreover we will study the completeness of the symplectic group with the geodesic distance. Fil: Lopez Galvan, Alberto Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina |
description |
The aim of this paper is the geometric study of the symplectic operators which are a perturbation of the identity by a Hilbert-Schmidt operator. This subgroup of the symplectic group was introduced in Pierre de la Harpe´s classical book of Banach-Lie groups. Throughout this paper we will endow the tangent spaces with different Riemannian metrics. We will use the minimal curves of the unitary group and the positive invertible operators to compare the length of the geodesic curves in each case. Moreover we will study the completeness of the symplectic group with the geodesic distance. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/18949 Lopez Galvan, Alberto Manuel; Riemannian metrics on an infinite dimensional symplectic group; Elsevier; Journal Of Mathematical Analysis And Applications; 428; 2; 3-2015; 1070-1084 0022-247X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/18949 |
identifier_str_mv |
Lopez Galvan, Alberto Manuel; Riemannian metrics on an infinite dimensional symplectic group; Elsevier; Journal Of Mathematical Analysis And Applications; 428; 2; 3-2015; 1070-1084 0022-247X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0022247X15002760 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2015.03.051 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614499408019456 |
score |
13.070432 |