A review of multivariate calibration methods applied to biomedical analysis
- Autores
- Escandar, Graciela Monica; Damiani, Patricia Cecilia; Goicoechea, Hector Casimiro; Olivieri, Alejandro Cesar
- Año de publicación
- 2006
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The determination of the contents of therapeutic drugs, metabolites and other important biomedical analytes in biological samples is usually performed by using high-performance liquid chromatography (HPLC). Modern multivariate calibration methods constitute an attractive alternative, even when they are applied to intrinsically unselective spectroscopic or electrochemical signals. First-order (i.e., vectorized) data are conveniently analyzed with classical chemometric tools such as partial least-squares (PLS). Certain analytical problems require more sophisticated models, such as artificial neural networks (ANNs), which are especially able to cope with non-linearities in the data structure. Finally, models based on the acquisition and processing of second- or higher-order data (i.e., matrices or higher dimensional data arrays) present the phenomenon known as "second-order advantage", which permits quantitation of calibrated analytes in the presence of interferents. The latter models show immense potentialities in the field of biomedical analysis. Pertinent literature examples are reviewed.
Fil: Escandar, Graciela Monica. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina
Fil: Damiani, Patricia Cecilia. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas; Argentina
Fil: Goicoechea, Hector Casimiro. Universidad Nacional del Litoral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina
Fil: Olivieri, Alejandro Cesar. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina - Materia
-
BIOMEDICAL ANALYSIS
FIRST- AND HIGHER-ORDER DATA
MULTIVARIATE CALIBRATION METHODS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/151001
Ver los metadatos del registro completo
id |
CONICETDig_bde43c1019d3bed62212c85332012aa4 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/151001 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A review of multivariate calibration methods applied to biomedical analysisEscandar, Graciela MonicaDamiani, Patricia CeciliaGoicoechea, Hector CasimiroOlivieri, Alejandro CesarBIOMEDICAL ANALYSISFIRST- AND HIGHER-ORDER DATAMULTIVARIATE CALIBRATION METHODShttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1The determination of the contents of therapeutic drugs, metabolites and other important biomedical analytes in biological samples is usually performed by using high-performance liquid chromatography (HPLC). Modern multivariate calibration methods constitute an attractive alternative, even when they are applied to intrinsically unselective spectroscopic or electrochemical signals. First-order (i.e., vectorized) data are conveniently analyzed with classical chemometric tools such as partial least-squares (PLS). Certain analytical problems require more sophisticated models, such as artificial neural networks (ANNs), which are especially able to cope with non-linearities in the data structure. Finally, models based on the acquisition and processing of second- or higher-order data (i.e., matrices or higher dimensional data arrays) present the phenomenon known as "second-order advantage", which permits quantitation of calibrated analytes in the presence of interferents. The latter models show immense potentialities in the field of biomedical analysis. Pertinent literature examples are reviewed.Fil: Escandar, Graciela Monica. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; ArgentinaFil: Damiani, Patricia Cecilia. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas; ArgentinaFil: Goicoechea, Hector Casimiro. Universidad Nacional del Litoral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; ArgentinaFil: Olivieri, Alejandro Cesar. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; ArgentinaElsevier Science2006-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/151001Escandar, Graciela Monica; Damiani, Patricia Cecilia; Goicoechea, Hector Casimiro; Olivieri, Alejandro Cesar; A review of multivariate calibration methods applied to biomedical analysis; Elsevier Science; Microchemical Journal; 82; 1; 1-2006; 29-420026-265XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0026265X05000846info:eu-repo/semantics/altIdentifier/doi/10.1016/j.microc.2005.07.001info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:39:46Zoai:ri.conicet.gov.ar:11336/151001instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:39:46.33CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A review of multivariate calibration methods applied to biomedical analysis |
title |
A review of multivariate calibration methods applied to biomedical analysis |
spellingShingle |
A review of multivariate calibration methods applied to biomedical analysis Escandar, Graciela Monica BIOMEDICAL ANALYSIS FIRST- AND HIGHER-ORDER DATA MULTIVARIATE CALIBRATION METHODS |
title_short |
A review of multivariate calibration methods applied to biomedical analysis |
title_full |
A review of multivariate calibration methods applied to biomedical analysis |
title_fullStr |
A review of multivariate calibration methods applied to biomedical analysis |
title_full_unstemmed |
A review of multivariate calibration methods applied to biomedical analysis |
title_sort |
A review of multivariate calibration methods applied to biomedical analysis |
dc.creator.none.fl_str_mv |
Escandar, Graciela Monica Damiani, Patricia Cecilia Goicoechea, Hector Casimiro Olivieri, Alejandro Cesar |
author |
Escandar, Graciela Monica |
author_facet |
Escandar, Graciela Monica Damiani, Patricia Cecilia Goicoechea, Hector Casimiro Olivieri, Alejandro Cesar |
author_role |
author |
author2 |
Damiani, Patricia Cecilia Goicoechea, Hector Casimiro Olivieri, Alejandro Cesar |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
BIOMEDICAL ANALYSIS FIRST- AND HIGHER-ORDER DATA MULTIVARIATE CALIBRATION METHODS |
topic |
BIOMEDICAL ANALYSIS FIRST- AND HIGHER-ORDER DATA MULTIVARIATE CALIBRATION METHODS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The determination of the contents of therapeutic drugs, metabolites and other important biomedical analytes in biological samples is usually performed by using high-performance liquid chromatography (HPLC). Modern multivariate calibration methods constitute an attractive alternative, even when they are applied to intrinsically unselective spectroscopic or electrochemical signals. First-order (i.e., vectorized) data are conveniently analyzed with classical chemometric tools such as partial least-squares (PLS). Certain analytical problems require more sophisticated models, such as artificial neural networks (ANNs), which are especially able to cope with non-linearities in the data structure. Finally, models based on the acquisition and processing of second- or higher-order data (i.e., matrices or higher dimensional data arrays) present the phenomenon known as "second-order advantage", which permits quantitation of calibrated analytes in the presence of interferents. The latter models show immense potentialities in the field of biomedical analysis. Pertinent literature examples are reviewed. Fil: Escandar, Graciela Monica. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina Fil: Damiani, Patricia Cecilia. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas; Argentina Fil: Goicoechea, Hector Casimiro. Universidad Nacional del Litoral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina Fil: Olivieri, Alejandro Cesar. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina |
description |
The determination of the contents of therapeutic drugs, metabolites and other important biomedical analytes in biological samples is usually performed by using high-performance liquid chromatography (HPLC). Modern multivariate calibration methods constitute an attractive alternative, even when they are applied to intrinsically unselective spectroscopic or electrochemical signals. First-order (i.e., vectorized) data are conveniently analyzed with classical chemometric tools such as partial least-squares (PLS). Certain analytical problems require more sophisticated models, such as artificial neural networks (ANNs), which are especially able to cope with non-linearities in the data structure. Finally, models based on the acquisition and processing of second- or higher-order data (i.e., matrices or higher dimensional data arrays) present the phenomenon known as "second-order advantage", which permits quantitation of calibrated analytes in the presence of interferents. The latter models show immense potentialities in the field of biomedical analysis. Pertinent literature examples are reviewed. |
publishDate |
2006 |
dc.date.none.fl_str_mv |
2006-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/151001 Escandar, Graciela Monica; Damiani, Patricia Cecilia; Goicoechea, Hector Casimiro; Olivieri, Alejandro Cesar; A review of multivariate calibration methods applied to biomedical analysis; Elsevier Science; Microchemical Journal; 82; 1; 1-2006; 29-42 0026-265X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/151001 |
identifier_str_mv |
Escandar, Graciela Monica; Damiani, Patricia Cecilia; Goicoechea, Hector Casimiro; Olivieri, Alejandro Cesar; A review of multivariate calibration methods applied to biomedical analysis; Elsevier Science; Microchemical Journal; 82; 1; 1-2006; 29-42 0026-265X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0026265X05000846 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.microc.2005.07.001 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613258214899712 |
score |
13.070432 |