Biomethane production modelling from third-generation biomass
- Autores
- Córdoba, Verónica Elizabeth; Bavio, Marcela Alejandra; Acosta, Gerardo Gabriel
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Third-generation biomass constitutes a renewable energy source that could substitute fossil fuels. This study evaluated the biomethane potential (BMP) of Ulva sp., Codium sp. and Undaria pinnatifida through anaerobic digestion. The daily production of biomethane was evaluated using different models, including Modified Gompertz, Chen and Hashimoto, First-order, Transfer and Cone models, as well as an Artificial Neural Network (ANN) model. The experimental BMP was 0.17, 0.26, and 0.32 Nm 3 /kg VS for Ulva sp., Codium sp., and U pinnatifida, respectively. Among the non-linear regression models, the Transfer model (R2 > 0.9915) and the First-order model (R2> 0.9889) are the ones that best fit the experimental data. However, the ANN shows a better fit (R2>0.999 and RMSE<4.537) to the data compared to the non-linear regression models. Furthermore, ANN can capture the complexity of biological systems, allowing for more accurate and detailed modelling of the processes involved. The identification and optimization of the biomethane potential of macroalgae contribute to developing sustainable energy alternatives, offering a renewable energy source that could mitigate the environmental stress associated with traditional fossil fuels.
Fil: Córdoba, Verónica Elizabeth. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Tandil. Centro de Investigaciones En Fisica E Ingenieria del Centro de la Provincia de Buenos Aires. Sede Olavarria del Centro de Investifaciones En Fisica E Ingenieria del Centro de la Provincia de Buenos Aires | Universidad Nacional del Centro de la Pcia.de Bs.as.. Centro de Investigaciones En Fisica E Ingenieria del Centro de la Provincia de Buenos Aires. Sede Olavarria del Centro de Investifaciones En Fisica E Ingenieria del Centro de la Provincia de Buenos Aires.; Argentina
Fil: Bavio, Marcela Alejandra. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Tandil. Centro de Investigaciones En Fisica E Ingenieria del Centro de la Provincia de Buenos Aires. Sede Olavarria del Centro de Investifaciones En Fisica E Ingenieria del Centro de la Provincia de Buenos Aires | Universidad Nacional del Centro de la Pcia.de Bs.as.. Centro de Investigaciones En Fisica E Ingenieria del Centro de la Provincia de Buenos Aires. Sede Olavarria del Centro de Investifaciones En Fisica E Ingenieria del Centro de la Provincia de Buenos Aires.; Argentina
Fil: Acosta, Gerardo Gabriel. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Tandil. Centro de Investigaciones En Fisica E Ingenieria del Centro de la Provincia de Buenos Aires. Sede Olavarria del Centro de Investifaciones En Fisica E Ingenieria del Centro de la Provincia de Buenos Aires | Universidad Nacional del Centro de la Pcia.de Bs.as.. Centro de Investigaciones En Fisica E Ingenieria del Centro de la Provincia de Buenos Aires. Sede Olavarria del Centro de Investifaciones En Fisica E Ingenieria del Centro de la Provincia de Buenos Aires.; Argentina - Materia
-
ANAEROBIC DIGESTION
BIOPROCESSES MODELLING
BIOMETHANE
MACROALGAE - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/260045
Ver los metadatos del registro completo
id |
CONICETDig_0ba0c89d5c520ce8ba36a3a9a0640099 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/260045 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Biomethane production modelling from third-generation biomassCórdoba, Verónica ElizabethBavio, Marcela AlejandraAcosta, Gerardo GabrielANAEROBIC DIGESTIONBIOPROCESSES MODELLINGBIOMETHANEMACROALGAEhttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2https://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Third-generation biomass constitutes a renewable energy source that could substitute fossil fuels. This study evaluated the biomethane potential (BMP) of Ulva sp., Codium sp. and Undaria pinnatifida through anaerobic digestion. The daily production of biomethane was evaluated using different models, including Modified Gompertz, Chen and Hashimoto, First-order, Transfer and Cone models, as well as an Artificial Neural Network (ANN) model. The experimental BMP was 0.17, 0.26, and 0.32 Nm 3 /kg VS for Ulva sp., Codium sp., and U pinnatifida, respectively. Among the non-linear regression models, the Transfer model (R2 > 0.9915) and the First-order model (R2> 0.9889) are the ones that best fit the experimental data. However, the ANN shows a better fit (R2>0.999 and RMSE<4.537) to the data compared to the non-linear regression models. Furthermore, ANN can capture the complexity of biological systems, allowing for more accurate and detailed modelling of the processes involved. The identification and optimization of the biomethane potential of macroalgae contribute to developing sustainable energy alternatives, offering a renewable energy source that could mitigate the environmental stress associated with traditional fossil fuels.Fil: Córdoba, Verónica Elizabeth. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Tandil. Centro de Investigaciones En Fisica E Ingenieria del Centro de la Provincia de Buenos Aires. Sede Olavarria del Centro de Investifaciones En Fisica E Ingenieria del Centro de la Provincia de Buenos Aires | Universidad Nacional del Centro de la Pcia.de Bs.as.. Centro de Investigaciones En Fisica E Ingenieria del Centro de la Provincia de Buenos Aires. Sede Olavarria del Centro de Investifaciones En Fisica E Ingenieria del Centro de la Provincia de Buenos Aires.; ArgentinaFil: Bavio, Marcela Alejandra. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Tandil. Centro de Investigaciones En Fisica E Ingenieria del Centro de la Provincia de Buenos Aires. Sede Olavarria del Centro de Investifaciones En Fisica E Ingenieria del Centro de la Provincia de Buenos Aires | Universidad Nacional del Centro de la Pcia.de Bs.as.. Centro de Investigaciones En Fisica E Ingenieria del Centro de la Provincia de Buenos Aires. Sede Olavarria del Centro de Investifaciones En Fisica E Ingenieria del Centro de la Provincia de Buenos Aires.; ArgentinaFil: Acosta, Gerardo Gabriel. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Tandil. Centro de Investigaciones En Fisica E Ingenieria del Centro de la Provincia de Buenos Aires. Sede Olavarria del Centro de Investifaciones En Fisica E Ingenieria del Centro de la Provincia de Buenos Aires | Universidad Nacional del Centro de la Pcia.de Bs.as.. Centro de Investigaciones En Fisica E Ingenieria del Centro de la Provincia de Buenos Aires. Sede Olavarria del Centro de Investifaciones En Fisica E Ingenieria del Centro de la Provincia de Buenos Aires.; ArgentinaPergamon-Elsevier Science Ltd2024-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/260045Córdoba, Verónica Elizabeth; Bavio, Marcela Alejandra; Acosta, Gerardo Gabriel; Biomethane production modelling from third-generation biomass; Pergamon-Elsevier Science Ltd; Renewable Energy; 234; 11-2024; 1-380960-1481CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0960148124012795info:eu-repo/semantics/altIdentifier/doi/10.1016/j.renene.2024.121211info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:43:43Zoai:ri.conicet.gov.ar:11336/260045instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:43:43.676CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Biomethane production modelling from third-generation biomass |
title |
Biomethane production modelling from third-generation biomass |
spellingShingle |
Biomethane production modelling from third-generation biomass Córdoba, Verónica Elizabeth ANAEROBIC DIGESTION BIOPROCESSES MODELLING BIOMETHANE MACROALGAE |
title_short |
Biomethane production modelling from third-generation biomass |
title_full |
Biomethane production modelling from third-generation biomass |
title_fullStr |
Biomethane production modelling from third-generation biomass |
title_full_unstemmed |
Biomethane production modelling from third-generation biomass |
title_sort |
Biomethane production modelling from third-generation biomass |
dc.creator.none.fl_str_mv |
Córdoba, Verónica Elizabeth Bavio, Marcela Alejandra Acosta, Gerardo Gabriel |
author |
Córdoba, Verónica Elizabeth |
author_facet |
Córdoba, Verónica Elizabeth Bavio, Marcela Alejandra Acosta, Gerardo Gabriel |
author_role |
author |
author2 |
Bavio, Marcela Alejandra Acosta, Gerardo Gabriel |
author2_role |
author author |
dc.subject.none.fl_str_mv |
ANAEROBIC DIGESTION BIOPROCESSES MODELLING BIOMETHANE MACROALGAE |
topic |
ANAEROBIC DIGESTION BIOPROCESSES MODELLING BIOMETHANE MACROALGAE |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.4 https://purl.org/becyt/ford/2 https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Third-generation biomass constitutes a renewable energy source that could substitute fossil fuels. This study evaluated the biomethane potential (BMP) of Ulva sp., Codium sp. and Undaria pinnatifida through anaerobic digestion. The daily production of biomethane was evaluated using different models, including Modified Gompertz, Chen and Hashimoto, First-order, Transfer and Cone models, as well as an Artificial Neural Network (ANN) model. The experimental BMP was 0.17, 0.26, and 0.32 Nm 3 /kg VS for Ulva sp., Codium sp., and U pinnatifida, respectively. Among the non-linear regression models, the Transfer model (R2 > 0.9915) and the First-order model (R2> 0.9889) are the ones that best fit the experimental data. However, the ANN shows a better fit (R2>0.999 and RMSE<4.537) to the data compared to the non-linear regression models. Furthermore, ANN can capture the complexity of biological systems, allowing for more accurate and detailed modelling of the processes involved. The identification and optimization of the biomethane potential of macroalgae contribute to developing sustainable energy alternatives, offering a renewable energy source that could mitigate the environmental stress associated with traditional fossil fuels. Fil: Córdoba, Verónica Elizabeth. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Tandil. Centro de Investigaciones En Fisica E Ingenieria del Centro de la Provincia de Buenos Aires. Sede Olavarria del Centro de Investifaciones En Fisica E Ingenieria del Centro de la Provincia de Buenos Aires | Universidad Nacional del Centro de la Pcia.de Bs.as.. Centro de Investigaciones En Fisica E Ingenieria del Centro de la Provincia de Buenos Aires. Sede Olavarria del Centro de Investifaciones En Fisica E Ingenieria del Centro de la Provincia de Buenos Aires.; Argentina Fil: Bavio, Marcela Alejandra. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Tandil. Centro de Investigaciones En Fisica E Ingenieria del Centro de la Provincia de Buenos Aires. Sede Olavarria del Centro de Investifaciones En Fisica E Ingenieria del Centro de la Provincia de Buenos Aires | Universidad Nacional del Centro de la Pcia.de Bs.as.. Centro de Investigaciones En Fisica E Ingenieria del Centro de la Provincia de Buenos Aires. Sede Olavarria del Centro de Investifaciones En Fisica E Ingenieria del Centro de la Provincia de Buenos Aires.; Argentina Fil: Acosta, Gerardo Gabriel. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Tandil. Centro de Investigaciones En Fisica E Ingenieria del Centro de la Provincia de Buenos Aires. Sede Olavarria del Centro de Investifaciones En Fisica E Ingenieria del Centro de la Provincia de Buenos Aires | Universidad Nacional del Centro de la Pcia.de Bs.as.. Centro de Investigaciones En Fisica E Ingenieria del Centro de la Provincia de Buenos Aires. Sede Olavarria del Centro de Investifaciones En Fisica E Ingenieria del Centro de la Provincia de Buenos Aires.; Argentina |
description |
Third-generation biomass constitutes a renewable energy source that could substitute fossil fuels. This study evaluated the biomethane potential (BMP) of Ulva sp., Codium sp. and Undaria pinnatifida through anaerobic digestion. The daily production of biomethane was evaluated using different models, including Modified Gompertz, Chen and Hashimoto, First-order, Transfer and Cone models, as well as an Artificial Neural Network (ANN) model. The experimental BMP was 0.17, 0.26, and 0.32 Nm 3 /kg VS for Ulva sp., Codium sp., and U pinnatifida, respectively. Among the non-linear regression models, the Transfer model (R2 > 0.9915) and the First-order model (R2> 0.9889) are the ones that best fit the experimental data. However, the ANN shows a better fit (R2>0.999 and RMSE<4.537) to the data compared to the non-linear regression models. Furthermore, ANN can capture the complexity of biological systems, allowing for more accurate and detailed modelling of the processes involved. The identification and optimization of the biomethane potential of macroalgae contribute to developing sustainable energy alternatives, offering a renewable energy source that could mitigate the environmental stress associated with traditional fossil fuels. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/260045 Córdoba, Verónica Elizabeth; Bavio, Marcela Alejandra; Acosta, Gerardo Gabriel; Biomethane production modelling from third-generation biomass; Pergamon-Elsevier Science Ltd; Renewable Energy; 234; 11-2024; 1-38 0960-1481 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/260045 |
identifier_str_mv |
Córdoba, Verónica Elizabeth; Bavio, Marcela Alejandra; Acosta, Gerardo Gabriel; Biomethane production modelling from third-generation biomass; Pergamon-Elsevier Science Ltd; Renewable Energy; 234; 11-2024; 1-38 0960-1481 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0960148124012795 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.renene.2024.121211 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268618153263104 |
score |
13.13397 |