About Convergence and Order of Convergence of Some Fractional Derivatives
- Autores
- Roscani, Sabrina Dina; Venturato, Lucas David
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper we obtain some convergence results for Riemann-Liouville, Caputo, and Caputo–Fabrizio fractional operators when the order of differentiation approaches one. We consider the errors given by D 1−α f − f ′ p for p=1 and p = ∞ and we prove that for bothm the Caputo and Caputo Fabrizio operators, the order of convergence is a positive real r ∈ (0,1). Finally, we compare the speed of convergence between Caputo and Caputo–Fabrizio operators obtaining that they are related by the Digamma function.
Fil: Roscani, Sabrina Dina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Austral; Argentina
Fil: Venturato, Lucas David. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
CAPUTO-FABRIZIO DERIVATIVE
CAPUTO DERIVATIVE
ORDER OF CONVERGENCE - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/221494
Ver los metadatos del registro completo
| id |
CONICETDig_0b001f1e724045541c8a338f1524e22d |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/221494 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
About Convergence and Order of Convergence of Some Fractional DerivativesRoscani, Sabrina DinaVenturato, Lucas DavidCAPUTO-FABRIZIO DERIVATIVECAPUTO DERIVATIVEORDER OF CONVERGENCEhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper we obtain some convergence results for Riemann-Liouville, Caputo, and Caputo–Fabrizio fractional operators when the order of differentiation approaches one. We consider the errors given by D 1−α f − f ′ p for p=1 and p = ∞ and we prove that for bothm the Caputo and Caputo Fabrizio operators, the order of convergence is a positive real r ∈ (0,1). Finally, we compare the speed of convergence between Caputo and Caputo–Fabrizio operators obtaining that they are related by the Digamma function.Fil: Roscani, Sabrina Dina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Austral; ArgentinaFil: Venturato, Lucas David. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaNatural Science Publishing2022-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/221494Roscani, Sabrina Dina; Venturato, Lucas David; About Convergence and Order of Convergence of Some Fractional Derivatives; Natural Science Publishing; Progress in Fractional Differentiation and Applications; 8; 4; 10-2022; 495-5082356-93362356-9344CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.naturalspublishing.com/Article.asp?ArtcID=25816info:eu-repo/semantics/altIdentifier/doi/10.18576/pfda/080404info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:25:20Zoai:ri.conicet.gov.ar:11336/221494instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:25:20.547CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
About Convergence and Order of Convergence of Some Fractional Derivatives |
| title |
About Convergence and Order of Convergence of Some Fractional Derivatives |
| spellingShingle |
About Convergence and Order of Convergence of Some Fractional Derivatives Roscani, Sabrina Dina CAPUTO-FABRIZIO DERIVATIVE CAPUTO DERIVATIVE ORDER OF CONVERGENCE |
| title_short |
About Convergence and Order of Convergence of Some Fractional Derivatives |
| title_full |
About Convergence and Order of Convergence of Some Fractional Derivatives |
| title_fullStr |
About Convergence and Order of Convergence of Some Fractional Derivatives |
| title_full_unstemmed |
About Convergence and Order of Convergence of Some Fractional Derivatives |
| title_sort |
About Convergence and Order of Convergence of Some Fractional Derivatives |
| dc.creator.none.fl_str_mv |
Roscani, Sabrina Dina Venturato, Lucas David |
| author |
Roscani, Sabrina Dina |
| author_facet |
Roscani, Sabrina Dina Venturato, Lucas David |
| author_role |
author |
| author2 |
Venturato, Lucas David |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
CAPUTO-FABRIZIO DERIVATIVE CAPUTO DERIVATIVE ORDER OF CONVERGENCE |
| topic |
CAPUTO-FABRIZIO DERIVATIVE CAPUTO DERIVATIVE ORDER OF CONVERGENCE |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
In this paper we obtain some convergence results for Riemann-Liouville, Caputo, and Caputo–Fabrizio fractional operators when the order of differentiation approaches one. We consider the errors given by D 1−α f − f ′ p for p=1 and p = ∞ and we prove that for bothm the Caputo and Caputo Fabrizio operators, the order of convergence is a positive real r ∈ (0,1). Finally, we compare the speed of convergence between Caputo and Caputo–Fabrizio operators obtaining that they are related by the Digamma function. Fil: Roscani, Sabrina Dina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Austral; Argentina Fil: Venturato, Lucas David. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
| description |
In this paper we obtain some convergence results for Riemann-Liouville, Caputo, and Caputo–Fabrizio fractional operators when the order of differentiation approaches one. We consider the errors given by D 1−α f − f ′ p for p=1 and p = ∞ and we prove that for bothm the Caputo and Caputo Fabrizio operators, the order of convergence is a positive real r ∈ (0,1). Finally, we compare the speed of convergence between Caputo and Caputo–Fabrizio operators obtaining that they are related by the Digamma function. |
| publishDate |
2022 |
| dc.date.none.fl_str_mv |
2022-10 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/221494 Roscani, Sabrina Dina; Venturato, Lucas David; About Convergence and Order of Convergence of Some Fractional Derivatives; Natural Science Publishing; Progress in Fractional Differentiation and Applications; 8; 4; 10-2022; 495-508 2356-9336 2356-9344 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/221494 |
| identifier_str_mv |
Roscani, Sabrina Dina; Venturato, Lucas David; About Convergence and Order of Convergence of Some Fractional Derivatives; Natural Science Publishing; Progress in Fractional Differentiation and Applications; 8; 4; 10-2022; 495-508 2356-9336 2356-9344 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.naturalspublishing.com/Article.asp?ArtcID=25816 info:eu-repo/semantics/altIdentifier/doi/10.18576/pfda/080404 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Natural Science Publishing |
| publisher.none.fl_str_mv |
Natural Science Publishing |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846781801010298880 |
| score |
12.982451 |