Average dynamics of a finite set of coupled phase oscillators

Autores
Dima, Germán César; Mindlin, Bernardo Gabriel
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Many fields of physics deal with the macroscopic description of large systems, composed by N interacting members. In some cases, it is possible to address them in terms of a mean field theory, designed to describe the parameters accounting for the average behavior of the system. This approach requires the study of a surrogate problem, consisting of an infinite number of interacting elements. In this work, we study the macroscopic dynamic of a system of N non-linear interacting units. For that, we use topological tools in order to compare the system of N units with its surrogate with infinite elements. We report, for a particular problem, a minimum number of units required for the two systems to be topologically equivalent.
Fil: Dima, Germán César. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Mindlin, Bernardo Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Materia
Chaos
Phase Oscillators
Mean Field
Bifurcations
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/17882

id CONICETDig_18157377443d3ce521eb19e17633cc69
oai_identifier_str oai:ri.conicet.gov.ar:11336/17882
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Average dynamics of a finite set of coupled phase oscillatorsDima, Germán CésarMindlin, Bernardo GabrielChaosPhase OscillatorsMean FieldBifurcationshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Many fields of physics deal with the macroscopic description of large systems, composed by N interacting members. In some cases, it is possible to address them in terms of a mean field theory, designed to describe the parameters accounting for the average behavior of the system. This approach requires the study of a surrogate problem, consisting of an infinite number of interacting elements. In this work, we study the macroscopic dynamic of a system of N non-linear interacting units. For that, we use topological tools in order to compare the system of N units with its surrogate with infinite elements. We report, for a particular problem, a minimum number of units required for the two systems to be topologically equivalent.Fil: Dima, Germán César. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Mindlin, Bernardo Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaAmerican Institute Of Physics2014-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/17882Dima, Germán César; Mindlin, Bernardo Gabriel; Average dynamics of a finite set of coupled phase oscillators; American Institute Of Physics; Chaos An Interdisciplinary Jr Of Nonlinear Science; 24; 3-2014; 1-7; 231121054-1500enginfo:eu-repo/semantics/altIdentifier/doi/10.1063/1.4874015info:eu-repo/semantics/altIdentifier/url/http://aip.scitation.org/doi/10.1063/1.4874015info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:47:38Zoai:ri.conicet.gov.ar:11336/17882instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:47:38.834CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Average dynamics of a finite set of coupled phase oscillators
title Average dynamics of a finite set of coupled phase oscillators
spellingShingle Average dynamics of a finite set of coupled phase oscillators
Dima, Germán César
Chaos
Phase Oscillators
Mean Field
Bifurcations
title_short Average dynamics of a finite set of coupled phase oscillators
title_full Average dynamics of a finite set of coupled phase oscillators
title_fullStr Average dynamics of a finite set of coupled phase oscillators
title_full_unstemmed Average dynamics of a finite set of coupled phase oscillators
title_sort Average dynamics of a finite set of coupled phase oscillators
dc.creator.none.fl_str_mv Dima, Germán César
Mindlin, Bernardo Gabriel
author Dima, Germán César
author_facet Dima, Germán César
Mindlin, Bernardo Gabriel
author_role author
author2 Mindlin, Bernardo Gabriel
author2_role author
dc.subject.none.fl_str_mv Chaos
Phase Oscillators
Mean Field
Bifurcations
topic Chaos
Phase Oscillators
Mean Field
Bifurcations
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Many fields of physics deal with the macroscopic description of large systems, composed by N interacting members. In some cases, it is possible to address them in terms of a mean field theory, designed to describe the parameters accounting for the average behavior of the system. This approach requires the study of a surrogate problem, consisting of an infinite number of interacting elements. In this work, we study the macroscopic dynamic of a system of N non-linear interacting units. For that, we use topological tools in order to compare the system of N units with its surrogate with infinite elements. We report, for a particular problem, a minimum number of units required for the two systems to be topologically equivalent.
Fil: Dima, Germán César. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Mindlin, Bernardo Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
description Many fields of physics deal with the macroscopic description of large systems, composed by N interacting members. In some cases, it is possible to address them in terms of a mean field theory, designed to describe the parameters accounting for the average behavior of the system. This approach requires the study of a surrogate problem, consisting of an infinite number of interacting elements. In this work, we study the macroscopic dynamic of a system of N non-linear interacting units. For that, we use topological tools in order to compare the system of N units with its surrogate with infinite elements. We report, for a particular problem, a minimum number of units required for the two systems to be topologically equivalent.
publishDate 2014
dc.date.none.fl_str_mv 2014-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/17882
Dima, Germán César; Mindlin, Bernardo Gabriel; Average dynamics of a finite set of coupled phase oscillators; American Institute Of Physics; Chaos An Interdisciplinary Jr Of Nonlinear Science; 24; 3-2014; 1-7; 23112
1054-1500
url http://hdl.handle.net/11336/17882
identifier_str_mv Dima, Germán César; Mindlin, Bernardo Gabriel; Average dynamics of a finite set of coupled phase oscillators; American Institute Of Physics; Chaos An Interdisciplinary Jr Of Nonlinear Science; 24; 3-2014; 1-7; 23112
1054-1500
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1063/1.4874015
info:eu-repo/semantics/altIdentifier/url/http://aip.scitation.org/doi/10.1063/1.4874015
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Institute Of Physics
publisher.none.fl_str_mv American Institute Of Physics
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614520580866048
score 13.070432