Average dynamics of a finite set of coupled phase oscillators
- Autores
- Dima, Germán César; Mindlin, Bernardo Gabriel
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Many fields of physics deal with the macroscopic description of large systems, composed by N interacting members. In some cases, it is possible to address them in terms of a mean field theory, designed to describe the parameters accounting for the average behavior of the system. This approach requires the study of a surrogate problem, consisting of an infinite number of interacting elements. In this work, we study the macroscopic dynamic of a system of N non-linear interacting units. For that, we use topological tools in order to compare the system of N units with its surrogate with infinite elements. We report, for a particular problem, a minimum number of units required for the two systems to be topologically equivalent.
Fil: Dima, Germán César. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Mindlin, Bernardo Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina - Materia
-
Chaos
Phase Oscillators
Mean Field
Bifurcations - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/17882
Ver los metadatos del registro completo
id |
CONICETDig_18157377443d3ce521eb19e17633cc69 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/17882 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Average dynamics of a finite set of coupled phase oscillatorsDima, Germán CésarMindlin, Bernardo GabrielChaosPhase OscillatorsMean FieldBifurcationshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Many fields of physics deal with the macroscopic description of large systems, composed by N interacting members. In some cases, it is possible to address them in terms of a mean field theory, designed to describe the parameters accounting for the average behavior of the system. This approach requires the study of a surrogate problem, consisting of an infinite number of interacting elements. In this work, we study the macroscopic dynamic of a system of N non-linear interacting units. For that, we use topological tools in order to compare the system of N units with its surrogate with infinite elements. We report, for a particular problem, a minimum number of units required for the two systems to be topologically equivalent.Fil: Dima, Germán César. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Mindlin, Bernardo Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaAmerican Institute Of Physics2014-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/17882Dima, Germán César; Mindlin, Bernardo Gabriel; Average dynamics of a finite set of coupled phase oscillators; American Institute Of Physics; Chaos An Interdisciplinary Jr Of Nonlinear Science; 24; 3-2014; 1-7; 231121054-1500enginfo:eu-repo/semantics/altIdentifier/doi/10.1063/1.4874015info:eu-repo/semantics/altIdentifier/url/http://aip.scitation.org/doi/10.1063/1.4874015info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:47:38Zoai:ri.conicet.gov.ar:11336/17882instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:47:38.834CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Average dynamics of a finite set of coupled phase oscillators |
title |
Average dynamics of a finite set of coupled phase oscillators |
spellingShingle |
Average dynamics of a finite set of coupled phase oscillators Dima, Germán César Chaos Phase Oscillators Mean Field Bifurcations |
title_short |
Average dynamics of a finite set of coupled phase oscillators |
title_full |
Average dynamics of a finite set of coupled phase oscillators |
title_fullStr |
Average dynamics of a finite set of coupled phase oscillators |
title_full_unstemmed |
Average dynamics of a finite set of coupled phase oscillators |
title_sort |
Average dynamics of a finite set of coupled phase oscillators |
dc.creator.none.fl_str_mv |
Dima, Germán César Mindlin, Bernardo Gabriel |
author |
Dima, Germán César |
author_facet |
Dima, Germán César Mindlin, Bernardo Gabriel |
author_role |
author |
author2 |
Mindlin, Bernardo Gabriel |
author2_role |
author |
dc.subject.none.fl_str_mv |
Chaos Phase Oscillators Mean Field Bifurcations |
topic |
Chaos Phase Oscillators Mean Field Bifurcations |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Many fields of physics deal with the macroscopic description of large systems, composed by N interacting members. In some cases, it is possible to address them in terms of a mean field theory, designed to describe the parameters accounting for the average behavior of the system. This approach requires the study of a surrogate problem, consisting of an infinite number of interacting elements. In this work, we study the macroscopic dynamic of a system of N non-linear interacting units. For that, we use topological tools in order to compare the system of N units with its surrogate with infinite elements. We report, for a particular problem, a minimum number of units required for the two systems to be topologically equivalent. Fil: Dima, Germán César. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina Fil: Mindlin, Bernardo Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina |
description |
Many fields of physics deal with the macroscopic description of large systems, composed by N interacting members. In some cases, it is possible to address them in terms of a mean field theory, designed to describe the parameters accounting for the average behavior of the system. This approach requires the study of a surrogate problem, consisting of an infinite number of interacting elements. In this work, we study the macroscopic dynamic of a system of N non-linear interacting units. For that, we use topological tools in order to compare the system of N units with its surrogate with infinite elements. We report, for a particular problem, a minimum number of units required for the two systems to be topologically equivalent. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/17882 Dima, Germán César; Mindlin, Bernardo Gabriel; Average dynamics of a finite set of coupled phase oscillators; American Institute Of Physics; Chaos An Interdisciplinary Jr Of Nonlinear Science; 24; 3-2014; 1-7; 23112 1054-1500 |
url |
http://hdl.handle.net/11336/17882 |
identifier_str_mv |
Dima, Germán César; Mindlin, Bernardo Gabriel; Average dynamics of a finite set of coupled phase oscillators; American Institute Of Physics; Chaos An Interdisciplinary Jr Of Nonlinear Science; 24; 3-2014; 1-7; 23112 1054-1500 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1063/1.4874015 info:eu-repo/semantics/altIdentifier/url/http://aip.scitation.org/doi/10.1063/1.4874015 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Institute Of Physics |
publisher.none.fl_str_mv |
American Institute Of Physics |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614520580866048 |
score |
13.070432 |