Speckle noise and soil heterogeneities as error sources in a Bayesian soil moisture retrieval scheme for SAR data
- Autores
- Barber, Matias Ernesto; Grings, Francisco Matias; Perna, Pablo Alejandro; Piscitelli, Marcela; Maas, Martín Daniel; Bruscantini, Cintia Alicia; Jacobo Berlles, Julio César Alberto; Karszenbaum, Haydee
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- —Soil moisture retrieval from SAR images is always affected by speckle noise and uncertainties associated to soil parameters, which impact negatively on the accuracy of soil moisture estimates. In this paper a soil moisture Bayesian estimator from polarimetric SAR images is proposed to address these issues. This estimator is based on a set of statistical distributions derived for the polarimetric soil backscattering coefficients, which naturally includes models for the soil scattering, the speckle and the soil spatial heterogeneity. As a natural advantage of the Bayesian approach, prior information about soil condition can be easily included, enhancing the performance of the retrieval. The Oh’s model is used as scattering model, although it presents a limiting range of validity for the retrieval of soil moisture. After fully stating the mathematical modeling, numerical simulations are presented. First, traditional minimization-based retrieval is investigated. Then, it is compared with the Bayesian retrieval scheme. The results indicate that the Bayesian model enlarges the validity region of the minimizationbased procedure. Moreover, as speckle effects are reduced by multilooking, Bayesian retrieval approaches the minimization-based retrieval. On the other hand, when speckle effects are large, an improvement in the accuracy of the retrieval is achieved by using a precise prior. The proposed algorithm can be applied to investigate which are the optimum parameters regarding multilooking process and prior information required to perform a precise retrieval in a given soil condition.
Fil: Barber, Matias Ernesto. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
Fil: Grings, Francisco Matias. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
Fil: Perna, Pablo Alejandro. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
Fil: Piscitelli, Marcela. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Agronomia; Argentina
Fil: Maas, Martín Daniel. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
Fil: Bruscantini, Cintia Alicia. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
Fil: Jacobo Berlles, Julio César Alberto. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina
Fil: Karszenbaum, Haydee. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina - Materia
-
Soil Moisture
Radar Applications
Bayesian Methods
Synthetic Aperture Radar
Inverse Problems - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/19527
Ver los metadatos del registro completo
id |
CONICETDig_09f75a940c48f813762bd7480f00ea83 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/19527 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Speckle noise and soil heterogeneities as error sources in a Bayesian soil moisture retrieval scheme for SAR dataBarber, Matias ErnestoGrings, Francisco MatiasPerna, Pablo AlejandroPiscitelli, MarcelaMaas, Martín DanielBruscantini, Cintia AliciaJacobo Berlles, Julio César AlbertoKarszenbaum, HaydeeSoil MoistureRadar ApplicationsBayesian MethodsSynthetic Aperture RadarInverse Problemshttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1—Soil moisture retrieval from SAR images is always affected by speckle noise and uncertainties associated to soil parameters, which impact negatively on the accuracy of soil moisture estimates. In this paper a soil moisture Bayesian estimator from polarimetric SAR images is proposed to address these issues. This estimator is based on a set of statistical distributions derived for the polarimetric soil backscattering coefficients, which naturally includes models for the soil scattering, the speckle and the soil spatial heterogeneity. As a natural advantage of the Bayesian approach, prior information about soil condition can be easily included, enhancing the performance of the retrieval. The Oh’s model is used as scattering model, although it presents a limiting range of validity for the retrieval of soil moisture. After fully stating the mathematical modeling, numerical simulations are presented. First, traditional minimization-based retrieval is investigated. Then, it is compared with the Bayesian retrieval scheme. The results indicate that the Bayesian model enlarges the validity region of the minimizationbased procedure. Moreover, as speckle effects are reduced by multilooking, Bayesian retrieval approaches the minimization-based retrieval. On the other hand, when speckle effects are large, an improvement in the accuracy of the retrieval is achieved by using a precise prior. The proposed algorithm can be applied to investigate which are the optimum parameters regarding multilooking process and prior information required to perform a precise retrieval in a given soil condition.Fil: Barber, Matias Ernesto. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Grings, Francisco Matias. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Perna, Pablo Alejandro. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Piscitelli, Marcela. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Agronomia; ArgentinaFil: Maas, Martín Daniel. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Bruscantini, Cintia Alicia. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Jacobo Berlles, Julio César Alberto. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; ArgentinaFil: Karszenbaum, Haydee. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaInstitute of Electrical and Electronics Engineers2012-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/19527Barber, Matias Ernesto; Grings, Francisco Matias; Perna, Pablo Alejandro; Piscitelli, Marcela; Maas, Martín Daniel; et al.; Speckle noise and soil heterogeneities as error sources in a Bayesian soil moisture retrieval scheme for SAR data; Institute of Electrical and Electronics Engineers; Ieee Journal Of Selected Topics In Applied Earth Observations And Remote Sensing; 5; 3; 6-2012; 942-9511939-1404CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1109/JSTARS.2012.2191266info:eu-repo/semantics/altIdentifier/url/http://ieeexplore.ieee.org/document/6227352/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:12:04Zoai:ri.conicet.gov.ar:11336/19527instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:12:04.493CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Speckle noise and soil heterogeneities as error sources in a Bayesian soil moisture retrieval scheme for SAR data |
title |
Speckle noise and soil heterogeneities as error sources in a Bayesian soil moisture retrieval scheme for SAR data |
spellingShingle |
Speckle noise and soil heterogeneities as error sources in a Bayesian soil moisture retrieval scheme for SAR data Barber, Matias Ernesto Soil Moisture Radar Applications Bayesian Methods Synthetic Aperture Radar Inverse Problems |
title_short |
Speckle noise and soil heterogeneities as error sources in a Bayesian soil moisture retrieval scheme for SAR data |
title_full |
Speckle noise and soil heterogeneities as error sources in a Bayesian soil moisture retrieval scheme for SAR data |
title_fullStr |
Speckle noise and soil heterogeneities as error sources in a Bayesian soil moisture retrieval scheme for SAR data |
title_full_unstemmed |
Speckle noise and soil heterogeneities as error sources in a Bayesian soil moisture retrieval scheme for SAR data |
title_sort |
Speckle noise and soil heterogeneities as error sources in a Bayesian soil moisture retrieval scheme for SAR data |
dc.creator.none.fl_str_mv |
Barber, Matias Ernesto Grings, Francisco Matias Perna, Pablo Alejandro Piscitelli, Marcela Maas, Martín Daniel Bruscantini, Cintia Alicia Jacobo Berlles, Julio César Alberto Karszenbaum, Haydee |
author |
Barber, Matias Ernesto |
author_facet |
Barber, Matias Ernesto Grings, Francisco Matias Perna, Pablo Alejandro Piscitelli, Marcela Maas, Martín Daniel Bruscantini, Cintia Alicia Jacobo Berlles, Julio César Alberto Karszenbaum, Haydee |
author_role |
author |
author2 |
Grings, Francisco Matias Perna, Pablo Alejandro Piscitelli, Marcela Maas, Martín Daniel Bruscantini, Cintia Alicia Jacobo Berlles, Julio César Alberto Karszenbaum, Haydee |
author2_role |
author author author author author author author |
dc.subject.none.fl_str_mv |
Soil Moisture Radar Applications Bayesian Methods Synthetic Aperture Radar Inverse Problems |
topic |
Soil Moisture Radar Applications Bayesian Methods Synthetic Aperture Radar Inverse Problems |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
—Soil moisture retrieval from SAR images is always affected by speckle noise and uncertainties associated to soil parameters, which impact negatively on the accuracy of soil moisture estimates. In this paper a soil moisture Bayesian estimator from polarimetric SAR images is proposed to address these issues. This estimator is based on a set of statistical distributions derived for the polarimetric soil backscattering coefficients, which naturally includes models for the soil scattering, the speckle and the soil spatial heterogeneity. As a natural advantage of the Bayesian approach, prior information about soil condition can be easily included, enhancing the performance of the retrieval. The Oh’s model is used as scattering model, although it presents a limiting range of validity for the retrieval of soil moisture. After fully stating the mathematical modeling, numerical simulations are presented. First, traditional minimization-based retrieval is investigated. Then, it is compared with the Bayesian retrieval scheme. The results indicate that the Bayesian model enlarges the validity region of the minimizationbased procedure. Moreover, as speckle effects are reduced by multilooking, Bayesian retrieval approaches the minimization-based retrieval. On the other hand, when speckle effects are large, an improvement in the accuracy of the retrieval is achieved by using a precise prior. The proposed algorithm can be applied to investigate which are the optimum parameters regarding multilooking process and prior information required to perform a precise retrieval in a given soil condition. Fil: Barber, Matias Ernesto. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina Fil: Grings, Francisco Matias. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina Fil: Perna, Pablo Alejandro. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina Fil: Piscitelli, Marcela. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Agronomia; Argentina Fil: Maas, Martín Daniel. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina Fil: Bruscantini, Cintia Alicia. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina Fil: Jacobo Berlles, Julio César Alberto. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina Fil: Karszenbaum, Haydee. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina |
description |
—Soil moisture retrieval from SAR images is always affected by speckle noise and uncertainties associated to soil parameters, which impact negatively on the accuracy of soil moisture estimates. In this paper a soil moisture Bayesian estimator from polarimetric SAR images is proposed to address these issues. This estimator is based on a set of statistical distributions derived for the polarimetric soil backscattering coefficients, which naturally includes models for the soil scattering, the speckle and the soil spatial heterogeneity. As a natural advantage of the Bayesian approach, prior information about soil condition can be easily included, enhancing the performance of the retrieval. The Oh’s model is used as scattering model, although it presents a limiting range of validity for the retrieval of soil moisture. After fully stating the mathematical modeling, numerical simulations are presented. First, traditional minimization-based retrieval is investigated. Then, it is compared with the Bayesian retrieval scheme. The results indicate that the Bayesian model enlarges the validity region of the minimizationbased procedure. Moreover, as speckle effects are reduced by multilooking, Bayesian retrieval approaches the minimization-based retrieval. On the other hand, when speckle effects are large, an improvement in the accuracy of the retrieval is achieved by using a precise prior. The proposed algorithm can be applied to investigate which are the optimum parameters regarding multilooking process and prior information required to perform a precise retrieval in a given soil condition. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/19527 Barber, Matias Ernesto; Grings, Francisco Matias; Perna, Pablo Alejandro; Piscitelli, Marcela; Maas, Martín Daniel; et al.; Speckle noise and soil heterogeneities as error sources in a Bayesian soil moisture retrieval scheme for SAR data; Institute of Electrical and Electronics Engineers; Ieee Journal Of Selected Topics In Applied Earth Observations And Remote Sensing; 5; 3; 6-2012; 942-951 1939-1404 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/19527 |
identifier_str_mv |
Barber, Matias Ernesto; Grings, Francisco Matias; Perna, Pablo Alejandro; Piscitelli, Marcela; Maas, Martín Daniel; et al.; Speckle noise and soil heterogeneities as error sources in a Bayesian soil moisture retrieval scheme for SAR data; Institute of Electrical and Electronics Engineers; Ieee Journal Of Selected Topics In Applied Earth Observations And Remote Sensing; 5; 3; 6-2012; 942-951 1939-1404 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1109/JSTARS.2012.2191266 info:eu-repo/semantics/altIdentifier/url/http://ieeexplore.ieee.org/document/6227352/ |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers |
publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614024852930560 |
score |
13.070432 |