Bayesian Combined Active/Passive (B-CAP) Soil Moisture Retrieval Algorithm
- Autores
- Barber, Matias Ernesto; Bruscantini, Cintia Alicia; Grings, Francisco Matias; Karszenbaum, Haydee
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This paper focused on exploiting remotely sensed active and passive observations over agricultural fields for soil moisture retrieval purposes. Co-polarized backscattering coefficients HH and VV and V-polarized brightness temperature TbV measurements were merged onto a Bayesian algorithm to enhance field-based retrieval estimates. The Bayesian algorithm relies on the use of active SAR to constrain passive information. It is assumed that observations are representative of an extent involving field sizes of about 800 m by 800 m, disregarding the scaling issues between the high resolution SAR pixel and the coarse resolution passive pixel. The integral equation model with multiple scattering at second order (IEM2M) and the ω-τ model were used as forward models for the backscattering coefficients and for the V-polarized brightness temperature, respectively. The Bayesian algorithm was assessed using datasets from the Soil Moisture Active Passive Validation Experiment 2012 (SMAPVEx12). Such datasets are representative of contrasting soil conditions since soil moisture spanned almost its whole feasible range from 0.10 to 0.40 cm3/cm3, at different observation geometries with incidence angles ranging from 35° to 55°. Also, the fairly large amount of measurements (97) made the dataset complete for assessment purposes. Soil moisture variability at field scale and dielectric probe error were accounted for in the comparison between retrieved estimates and in situ measurements. Performance metrics were used to quantify the agreement of the retrieval methodology to in situ information, and to assess the improvement in the combined methodology with respect to the single ones (active or passive). Overall, the root mean squared error (RMSE) showed an improvement from 0.08 to 0.11 cm3/cm3 (only active) or 0.03-0.12 cm3/cm3 (only passive, after bias correction) to 0.06-0.10 cm3/cm3 (combined), thus, demonstrating the potential of such combined soil moisture estimates. When analyzed each field separately, RMSE is less than 0.07 cm3/cm3 and correlation coefficient r is greater than 0.6 for most of the fields.
Fil: Barber, Matias Ernesto. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
Fil: Bruscantini, Cintia Alicia. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
Fil: Grings, Francisco Matias. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
Fil: Karszenbaum, Haydee. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina - Materia
-
Bayes Procedures
Inverse Problems
Moisture
Radar Applications
Remote Sensing
Rough Surfaces
Soil Measurements
Synthetic Aperture Radar (Sar) - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/21734
Ver los metadatos del registro completo
id |
CONICETDig_52f133f4e95561fd3cb3678339bb3262 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/21734 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Bayesian Combined Active/Passive (B-CAP) Soil Moisture Retrieval AlgorithmBarber, Matias ErnestoBruscantini, Cintia AliciaGrings, Francisco MatiasKarszenbaum, HaydeeBayes ProceduresInverse ProblemsMoistureRadar ApplicationsRemote SensingRough SurfacesSoil MeasurementsSynthetic Aperture Radar (Sar)https://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1This paper focused on exploiting remotely sensed active and passive observations over agricultural fields for soil moisture retrieval purposes. Co-polarized backscattering coefficients HH and VV and V-polarized brightness temperature TbV measurements were merged onto a Bayesian algorithm to enhance field-based retrieval estimates. The Bayesian algorithm relies on the use of active SAR to constrain passive information. It is assumed that observations are representative of an extent involving field sizes of about 800 m by 800 m, disregarding the scaling issues between the high resolution SAR pixel and the coarse resolution passive pixel. The integral equation model with multiple scattering at second order (IEM2M) and the ω-τ model were used as forward models for the backscattering coefficients and for the V-polarized brightness temperature, respectively. The Bayesian algorithm was assessed using datasets from the Soil Moisture Active Passive Validation Experiment 2012 (SMAPVEx12). Such datasets are representative of contrasting soil conditions since soil moisture spanned almost its whole feasible range from 0.10 to 0.40 cm3/cm3, at different observation geometries with incidence angles ranging from 35° to 55°. Also, the fairly large amount of measurements (97) made the dataset complete for assessment purposes. Soil moisture variability at field scale and dielectric probe error were accounted for in the comparison between retrieved estimates and in situ measurements. Performance metrics were used to quantify the agreement of the retrieval methodology to in situ information, and to assess the improvement in the combined methodology with respect to the single ones (active or passive). Overall, the root mean squared error (RMSE) showed an improvement from 0.08 to 0.11 cm3/cm3 (only active) or 0.03-0.12 cm3/cm3 (only passive, after bias correction) to 0.06-0.10 cm3/cm3 (combined), thus, demonstrating the potential of such combined soil moisture estimates. When analyzed each field separately, RMSE is less than 0.07 cm3/cm3 and correlation coefficient r is greater than 0.6 for most of the fields.Fil: Barber, Matias Ernesto. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Bruscantini, Cintia Alicia. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Grings, Francisco Matias. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Karszenbaum, Haydee. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaInstitute of Electrical and Electronics Engineers2016-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/21734Barber, Matias Ernesto; Bruscantini, Cintia Alicia; Grings, Francisco Matias; Karszenbaum, Haydee; Bayesian Combined Active/Passive (B-CAP) Soil Moisture Retrieval Algorithm; Institute of Electrical and Electronics Engineers; Ieee Journal Of Selected Topics In Applied Earth Observations And Remote Sensing; 9; 12; 10-2016; 5449-54601939-1404CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1109/JSTARS.2016.2611491info:eu-repo/semantics/altIdentifier/url/http://ieeexplore.ieee.org/document/7583692/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:17:57Zoai:ri.conicet.gov.ar:11336/21734instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:17:57.346CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Bayesian Combined Active/Passive (B-CAP) Soil Moisture Retrieval Algorithm |
title |
Bayesian Combined Active/Passive (B-CAP) Soil Moisture Retrieval Algorithm |
spellingShingle |
Bayesian Combined Active/Passive (B-CAP) Soil Moisture Retrieval Algorithm Barber, Matias Ernesto Bayes Procedures Inverse Problems Moisture Radar Applications Remote Sensing Rough Surfaces Soil Measurements Synthetic Aperture Radar (Sar) |
title_short |
Bayesian Combined Active/Passive (B-CAP) Soil Moisture Retrieval Algorithm |
title_full |
Bayesian Combined Active/Passive (B-CAP) Soil Moisture Retrieval Algorithm |
title_fullStr |
Bayesian Combined Active/Passive (B-CAP) Soil Moisture Retrieval Algorithm |
title_full_unstemmed |
Bayesian Combined Active/Passive (B-CAP) Soil Moisture Retrieval Algorithm |
title_sort |
Bayesian Combined Active/Passive (B-CAP) Soil Moisture Retrieval Algorithm |
dc.creator.none.fl_str_mv |
Barber, Matias Ernesto Bruscantini, Cintia Alicia Grings, Francisco Matias Karszenbaum, Haydee |
author |
Barber, Matias Ernesto |
author_facet |
Barber, Matias Ernesto Bruscantini, Cintia Alicia Grings, Francisco Matias Karszenbaum, Haydee |
author_role |
author |
author2 |
Bruscantini, Cintia Alicia Grings, Francisco Matias Karszenbaum, Haydee |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Bayes Procedures Inverse Problems Moisture Radar Applications Remote Sensing Rough Surfaces Soil Measurements Synthetic Aperture Radar (Sar) |
topic |
Bayes Procedures Inverse Problems Moisture Radar Applications Remote Sensing Rough Surfaces Soil Measurements Synthetic Aperture Radar (Sar) |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
This paper focused on exploiting remotely sensed active and passive observations over agricultural fields for soil moisture retrieval purposes. Co-polarized backscattering coefficients HH and VV and V-polarized brightness temperature TbV measurements were merged onto a Bayesian algorithm to enhance field-based retrieval estimates. The Bayesian algorithm relies on the use of active SAR to constrain passive information. It is assumed that observations are representative of an extent involving field sizes of about 800 m by 800 m, disregarding the scaling issues between the high resolution SAR pixel and the coarse resolution passive pixel. The integral equation model with multiple scattering at second order (IEM2M) and the ω-τ model were used as forward models for the backscattering coefficients and for the V-polarized brightness temperature, respectively. The Bayesian algorithm was assessed using datasets from the Soil Moisture Active Passive Validation Experiment 2012 (SMAPVEx12). Such datasets are representative of contrasting soil conditions since soil moisture spanned almost its whole feasible range from 0.10 to 0.40 cm3/cm3, at different observation geometries with incidence angles ranging from 35° to 55°. Also, the fairly large amount of measurements (97) made the dataset complete for assessment purposes. Soil moisture variability at field scale and dielectric probe error were accounted for in the comparison between retrieved estimates and in situ measurements. Performance metrics were used to quantify the agreement of the retrieval methodology to in situ information, and to assess the improvement in the combined methodology with respect to the single ones (active or passive). Overall, the root mean squared error (RMSE) showed an improvement from 0.08 to 0.11 cm3/cm3 (only active) or 0.03-0.12 cm3/cm3 (only passive, after bias correction) to 0.06-0.10 cm3/cm3 (combined), thus, demonstrating the potential of such combined soil moisture estimates. When analyzed each field separately, RMSE is less than 0.07 cm3/cm3 and correlation coefficient r is greater than 0.6 for most of the fields. Fil: Barber, Matias Ernesto. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina Fil: Bruscantini, Cintia Alicia. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina Fil: Grings, Francisco Matias. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina Fil: Karszenbaum, Haydee. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina |
description |
This paper focused on exploiting remotely sensed active and passive observations over agricultural fields for soil moisture retrieval purposes. Co-polarized backscattering coefficients HH and VV and V-polarized brightness temperature TbV measurements were merged onto a Bayesian algorithm to enhance field-based retrieval estimates. The Bayesian algorithm relies on the use of active SAR to constrain passive information. It is assumed that observations are representative of an extent involving field sizes of about 800 m by 800 m, disregarding the scaling issues between the high resolution SAR pixel and the coarse resolution passive pixel. The integral equation model with multiple scattering at second order (IEM2M) and the ω-τ model were used as forward models for the backscattering coefficients and for the V-polarized brightness temperature, respectively. The Bayesian algorithm was assessed using datasets from the Soil Moisture Active Passive Validation Experiment 2012 (SMAPVEx12). Such datasets are representative of contrasting soil conditions since soil moisture spanned almost its whole feasible range from 0.10 to 0.40 cm3/cm3, at different observation geometries with incidence angles ranging from 35° to 55°. Also, the fairly large amount of measurements (97) made the dataset complete for assessment purposes. Soil moisture variability at field scale and dielectric probe error were accounted for in the comparison between retrieved estimates and in situ measurements. Performance metrics were used to quantify the agreement of the retrieval methodology to in situ information, and to assess the improvement in the combined methodology with respect to the single ones (active or passive). Overall, the root mean squared error (RMSE) showed an improvement from 0.08 to 0.11 cm3/cm3 (only active) or 0.03-0.12 cm3/cm3 (only passive, after bias correction) to 0.06-0.10 cm3/cm3 (combined), thus, demonstrating the potential of such combined soil moisture estimates. When analyzed each field separately, RMSE is less than 0.07 cm3/cm3 and correlation coefficient r is greater than 0.6 for most of the fields. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/21734 Barber, Matias Ernesto; Bruscantini, Cintia Alicia; Grings, Francisco Matias; Karszenbaum, Haydee; Bayesian Combined Active/Passive (B-CAP) Soil Moisture Retrieval Algorithm; Institute of Electrical and Electronics Engineers; Ieee Journal Of Selected Topics In Applied Earth Observations And Remote Sensing; 9; 12; 10-2016; 5449-5460 1939-1404 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/21734 |
identifier_str_mv |
Barber, Matias Ernesto; Bruscantini, Cintia Alicia; Grings, Francisco Matias; Karszenbaum, Haydee; Bayesian Combined Active/Passive (B-CAP) Soil Moisture Retrieval Algorithm; Institute of Electrical and Electronics Engineers; Ieee Journal Of Selected Topics In Applied Earth Observations And Remote Sensing; 9; 12; 10-2016; 5449-5460 1939-1404 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1109/JSTARS.2016.2611491 info:eu-repo/semantics/altIdentifier/url/http://ieeexplore.ieee.org/document/7583692/ |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers |
publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614137113477120 |
score |
13.070432 |