Obtención de recubrimientos bioactivos de poli(ε-caprolactona-bdimetilsiloxano)/fosfato tribásico de calcio a través de co-deposición electroforética
- Autores
- Redondo, Franco Leonardo; Ciolino, Andrés Eduardo; Ninago, Mario Daniel
- Año de publicación
- 2021
- Idioma
- español castellano
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- En los últimos años, los materiales biocompatibles han tenido un creciente interés dentro de la ingeniería de tejidos debido a que proporcionan nuevos enfoques para el desarrollo de materiales que contribuyan a la regeneración de tejidos en cirugía ortopédica, así como la liberación controlada de fármacos entre sus principales aplicaciones [1]. En este sentido, uno de los principales retos consiste en obtener materiales no tóxicos, biodegradables y con buena estabilidad mecánica para su correcta aplicación. Debido a las diversas necesidades de las aplicaciones, los compuestos formados por dos o más materiales son excelentes candidatos para estos tipos de usos. Entre los más estudiados se pueden mencionar polímeros, cerámicas, silicatos y fosfatos bioactivos. Por otra parte, han surgido diversas metodologías capaces de desarrollar estos materiales, entre las que se destacan el mezclado en fundido, la disolución-lixiviación y la deposición electroforética (EPD) [2]. En este contexto, el fosfato tribásico de calcio (TCP) y sus mezclas con polímeros se encuentran entre los materiales inorgánicos más usados en EPD. Por lo tanto, el uso de copolímeros biodegradables y partículas bioactivas surge como una alternativa menos explorada para la fabricación de recubrimientos sobre sustratos metálicos.En este trabajo se fabricaron recubrimientos compuestos a base de copolímeros de poli(ε-caprolactona-bloque-dimetilsiloxano) y TCP sobre sustratos de acero inoxidable mediante EPD, los cuales fueron sumergidos en fluido corporal simulado (SBF) por 7 y 28 días para evaluar su bioactividad. Asimismo, los recubrimientos obtenidos se caracterizaron térmica, morfológica y fisicoquímicamente antes y después de los ensayos in-vitro. A partir de ensayos gravimétricos se observó una dependencia lineal del espesor y peso depositado con el tiempo de electrodeposición. Por otra parte, el análisis por TGA reveló un rango de descomposición que se inicia a ~ 300 °C y se extiende hasta ~ 400 °C, alcanzándose una pérdida de masa de 89%. Mediante SEM se evaluó la microestructura superficial de los recubrimientos, observándose una superficie porosa sobre el sustrato metálico y la ausencia de microfisuras. Luego de los ensayos in-vitro, el análisis SEM-EDX reveló una relación Ca/P ~1,5, siendo este valor similar al encontrado en tejidos duros. Finalmente, a partir de ensayos de FTIR y XRD se detectaron bandas de absorción y planos de difracción asociados a una fase mineral de hidroxiapatita, que confirman el proceso de mineralización de las partículas de TCP durante los ensayos de bioactividad.
Fil: Redondo, Franco Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Aplicadas a la Industria; Argentina
Fil: Ciolino, Andrés Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Química; Argentina
Fil: Ninago, Mario Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Aplicadas a la Industria; Argentina
VII Encuentro Argentino de Materia Blanda
Ciudad Autónoma de Buenos Aires
Argentina
Universidad Nacional de San Martín. Instituto de Nanosistemas;
Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales
Comisiòn Nacional de Energía Atómica. Instituto de Nanociencia y Nanotecnología - Materia
-
RECUBRIMIENTOS COMPUESTOS
BIOACTIVIDAD
ELECTRODEPOSICIÓN
COPOLÍMEROS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/194654
Ver los metadatos del registro completo
id |
CONICETDig_09dbff9ce1d3585f4de9a3e805b10eaa |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/194654 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Obtención de recubrimientos bioactivos de poli(ε-caprolactona-bdimetilsiloxano)/fosfato tribásico de calcio a través de co-deposición electroforéticaRedondo, Franco LeonardoCiolino, Andrés EduardoNinago, Mario DanielRECUBRIMIENTOS COMPUESTOSBIOACTIVIDADELECTRODEPOSICIÓNCOPOLÍMEROShttps://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2En los últimos años, los materiales biocompatibles han tenido un creciente interés dentro de la ingeniería de tejidos debido a que proporcionan nuevos enfoques para el desarrollo de materiales que contribuyan a la regeneración de tejidos en cirugía ortopédica, así como la liberación controlada de fármacos entre sus principales aplicaciones [1]. En este sentido, uno de los principales retos consiste en obtener materiales no tóxicos, biodegradables y con buena estabilidad mecánica para su correcta aplicación. Debido a las diversas necesidades de las aplicaciones, los compuestos formados por dos o más materiales son excelentes candidatos para estos tipos de usos. Entre los más estudiados se pueden mencionar polímeros, cerámicas, silicatos y fosfatos bioactivos. Por otra parte, han surgido diversas metodologías capaces de desarrollar estos materiales, entre las que se destacan el mezclado en fundido, la disolución-lixiviación y la deposición electroforética (EPD) [2]. En este contexto, el fosfato tribásico de calcio (TCP) y sus mezclas con polímeros se encuentran entre los materiales inorgánicos más usados en EPD. Por lo tanto, el uso de copolímeros biodegradables y partículas bioactivas surge como una alternativa menos explorada para la fabricación de recubrimientos sobre sustratos metálicos.En este trabajo se fabricaron recubrimientos compuestos a base de copolímeros de poli(ε-caprolactona-bloque-dimetilsiloxano) y TCP sobre sustratos de acero inoxidable mediante EPD, los cuales fueron sumergidos en fluido corporal simulado (SBF) por 7 y 28 días para evaluar su bioactividad. Asimismo, los recubrimientos obtenidos se caracterizaron térmica, morfológica y fisicoquímicamente antes y después de los ensayos in-vitro. A partir de ensayos gravimétricos se observó una dependencia lineal del espesor y peso depositado con el tiempo de electrodeposición. Por otra parte, el análisis por TGA reveló un rango de descomposición que se inicia a ~ 300 °C y se extiende hasta ~ 400 °C, alcanzándose una pérdida de masa de 89%. Mediante SEM se evaluó la microestructura superficial de los recubrimientos, observándose una superficie porosa sobre el sustrato metálico y la ausencia de microfisuras. Luego de los ensayos in-vitro, el análisis SEM-EDX reveló una relación Ca/P ~1,5, siendo este valor similar al encontrado en tejidos duros. Finalmente, a partir de ensayos de FTIR y XRD se detectaron bandas de absorción y planos de difracción asociados a una fase mineral de hidroxiapatita, que confirman el proceso de mineralización de las partículas de TCP durante los ensayos de bioactividad.Fil: Redondo, Franco Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Aplicadas a la Industria; ArgentinaFil: Ciolino, Andrés Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Química; ArgentinaFil: Ninago, Mario Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Aplicadas a la Industria; ArgentinaVII Encuentro Argentino de Materia BlandaCiudad Autónoma de Buenos AiresArgentinaUniversidad Nacional de San Martín. Instituto de Nanosistemas;Universidad de Buenos Aires. Facultad de Ciencias Exactas y NaturalesComisiòn Nacional de Energía Atómica. Instituto de Nanociencia y NanotecnologíaUniversidad de Buenos Aires2021info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectEncuentroBookhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/194654Obtención de recubrimientos bioactivos de poli(ε-caprolactona-bdimetilsiloxano)/fosfato tribásico de calcio a través de co-deposición electroforética; VII Encuentro Argentino de Materia Blanda; Ciudad Autónoma de Buenos Aires; Argentina; 2021; 37-37CONICET DigitalCONICETspainfo:eu-repo/semantics/altIdentifier/url/http://mabvii.qi.fcen.uba.ar/Nacionalinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:08:52Zoai:ri.conicet.gov.ar:11336/194654instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:08:52.388CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Obtención de recubrimientos bioactivos de poli(ε-caprolactona-bdimetilsiloxano)/fosfato tribásico de calcio a través de co-deposición electroforética |
title |
Obtención de recubrimientos bioactivos de poli(ε-caprolactona-bdimetilsiloxano)/fosfato tribásico de calcio a través de co-deposición electroforética |
spellingShingle |
Obtención de recubrimientos bioactivos de poli(ε-caprolactona-bdimetilsiloxano)/fosfato tribásico de calcio a través de co-deposición electroforética Redondo, Franco Leonardo RECUBRIMIENTOS COMPUESTOS BIOACTIVIDAD ELECTRODEPOSICIÓN COPOLÍMEROS |
title_short |
Obtención de recubrimientos bioactivos de poli(ε-caprolactona-bdimetilsiloxano)/fosfato tribásico de calcio a través de co-deposición electroforética |
title_full |
Obtención de recubrimientos bioactivos de poli(ε-caprolactona-bdimetilsiloxano)/fosfato tribásico de calcio a través de co-deposición electroforética |
title_fullStr |
Obtención de recubrimientos bioactivos de poli(ε-caprolactona-bdimetilsiloxano)/fosfato tribásico de calcio a través de co-deposición electroforética |
title_full_unstemmed |
Obtención de recubrimientos bioactivos de poli(ε-caprolactona-bdimetilsiloxano)/fosfato tribásico de calcio a través de co-deposición electroforética |
title_sort |
Obtención de recubrimientos bioactivos de poli(ε-caprolactona-bdimetilsiloxano)/fosfato tribásico de calcio a través de co-deposición electroforética |
dc.creator.none.fl_str_mv |
Redondo, Franco Leonardo Ciolino, Andrés Eduardo Ninago, Mario Daniel |
author |
Redondo, Franco Leonardo |
author_facet |
Redondo, Franco Leonardo Ciolino, Andrés Eduardo Ninago, Mario Daniel |
author_role |
author |
author2 |
Ciolino, Andrés Eduardo Ninago, Mario Daniel |
author2_role |
author author |
dc.subject.none.fl_str_mv |
RECUBRIMIENTOS COMPUESTOS BIOACTIVIDAD ELECTRODEPOSICIÓN COPOLÍMEROS |
topic |
RECUBRIMIENTOS COMPUESTOS BIOACTIVIDAD ELECTRODEPOSICIÓN COPOLÍMEROS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.5 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
En los últimos años, los materiales biocompatibles han tenido un creciente interés dentro de la ingeniería de tejidos debido a que proporcionan nuevos enfoques para el desarrollo de materiales que contribuyan a la regeneración de tejidos en cirugía ortopédica, así como la liberación controlada de fármacos entre sus principales aplicaciones [1]. En este sentido, uno de los principales retos consiste en obtener materiales no tóxicos, biodegradables y con buena estabilidad mecánica para su correcta aplicación. Debido a las diversas necesidades de las aplicaciones, los compuestos formados por dos o más materiales son excelentes candidatos para estos tipos de usos. Entre los más estudiados se pueden mencionar polímeros, cerámicas, silicatos y fosfatos bioactivos. Por otra parte, han surgido diversas metodologías capaces de desarrollar estos materiales, entre las que se destacan el mezclado en fundido, la disolución-lixiviación y la deposición electroforética (EPD) [2]. En este contexto, el fosfato tribásico de calcio (TCP) y sus mezclas con polímeros se encuentran entre los materiales inorgánicos más usados en EPD. Por lo tanto, el uso de copolímeros biodegradables y partículas bioactivas surge como una alternativa menos explorada para la fabricación de recubrimientos sobre sustratos metálicos.En este trabajo se fabricaron recubrimientos compuestos a base de copolímeros de poli(ε-caprolactona-bloque-dimetilsiloxano) y TCP sobre sustratos de acero inoxidable mediante EPD, los cuales fueron sumergidos en fluido corporal simulado (SBF) por 7 y 28 días para evaluar su bioactividad. Asimismo, los recubrimientos obtenidos se caracterizaron térmica, morfológica y fisicoquímicamente antes y después de los ensayos in-vitro. A partir de ensayos gravimétricos se observó una dependencia lineal del espesor y peso depositado con el tiempo de electrodeposición. Por otra parte, el análisis por TGA reveló un rango de descomposición que se inicia a ~ 300 °C y se extiende hasta ~ 400 °C, alcanzándose una pérdida de masa de 89%. Mediante SEM se evaluó la microestructura superficial de los recubrimientos, observándose una superficie porosa sobre el sustrato metálico y la ausencia de microfisuras. Luego de los ensayos in-vitro, el análisis SEM-EDX reveló una relación Ca/P ~1,5, siendo este valor similar al encontrado en tejidos duros. Finalmente, a partir de ensayos de FTIR y XRD se detectaron bandas de absorción y planos de difracción asociados a una fase mineral de hidroxiapatita, que confirman el proceso de mineralización de las partículas de TCP durante los ensayos de bioactividad. Fil: Redondo, Franco Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Aplicadas a la Industria; Argentina Fil: Ciolino, Andrés Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Química; Argentina Fil: Ninago, Mario Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Aplicadas a la Industria; Argentina VII Encuentro Argentino de Materia Blanda Ciudad Autónoma de Buenos Aires Argentina Universidad Nacional de San Martín. Instituto de Nanosistemas; Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales Comisiòn Nacional de Energía Atómica. Instituto de Nanociencia y Nanotecnología |
description |
En los últimos años, los materiales biocompatibles han tenido un creciente interés dentro de la ingeniería de tejidos debido a que proporcionan nuevos enfoques para el desarrollo de materiales que contribuyan a la regeneración de tejidos en cirugía ortopédica, así como la liberación controlada de fármacos entre sus principales aplicaciones [1]. En este sentido, uno de los principales retos consiste en obtener materiales no tóxicos, biodegradables y con buena estabilidad mecánica para su correcta aplicación. Debido a las diversas necesidades de las aplicaciones, los compuestos formados por dos o más materiales son excelentes candidatos para estos tipos de usos. Entre los más estudiados se pueden mencionar polímeros, cerámicas, silicatos y fosfatos bioactivos. Por otra parte, han surgido diversas metodologías capaces de desarrollar estos materiales, entre las que se destacan el mezclado en fundido, la disolución-lixiviación y la deposición electroforética (EPD) [2]. En este contexto, el fosfato tribásico de calcio (TCP) y sus mezclas con polímeros se encuentran entre los materiales inorgánicos más usados en EPD. Por lo tanto, el uso de copolímeros biodegradables y partículas bioactivas surge como una alternativa menos explorada para la fabricación de recubrimientos sobre sustratos metálicos.En este trabajo se fabricaron recubrimientos compuestos a base de copolímeros de poli(ε-caprolactona-bloque-dimetilsiloxano) y TCP sobre sustratos de acero inoxidable mediante EPD, los cuales fueron sumergidos en fluido corporal simulado (SBF) por 7 y 28 días para evaluar su bioactividad. Asimismo, los recubrimientos obtenidos se caracterizaron térmica, morfológica y fisicoquímicamente antes y después de los ensayos in-vitro. A partir de ensayos gravimétricos se observó una dependencia lineal del espesor y peso depositado con el tiempo de electrodeposición. Por otra parte, el análisis por TGA reveló un rango de descomposición que se inicia a ~ 300 °C y se extiende hasta ~ 400 °C, alcanzándose una pérdida de masa de 89%. Mediante SEM se evaluó la microestructura superficial de los recubrimientos, observándose una superficie porosa sobre el sustrato metálico y la ausencia de microfisuras. Luego de los ensayos in-vitro, el análisis SEM-EDX reveló una relación Ca/P ~1,5, siendo este valor similar al encontrado en tejidos duros. Finalmente, a partir de ensayos de FTIR y XRD se detectaron bandas de absorción y planos de difracción asociados a una fase mineral de hidroxiapatita, que confirman el proceso de mineralización de las partículas de TCP durante los ensayos de bioactividad. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/conferenceObject Encuentro Book http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
status_str |
publishedVersion |
format |
conferenceObject |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/194654 Obtención de recubrimientos bioactivos de poli(ε-caprolactona-bdimetilsiloxano)/fosfato tribásico de calcio a través de co-deposición electroforética; VII Encuentro Argentino de Materia Blanda; Ciudad Autónoma de Buenos Aires; Argentina; 2021; 37-37 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/194654 |
identifier_str_mv |
Obtención de recubrimientos bioactivos de poli(ε-caprolactona-bdimetilsiloxano)/fosfato tribásico de calcio a través de co-deposición electroforética; VII Encuentro Argentino de Materia Blanda; Ciudad Autónoma de Buenos Aires; Argentina; 2021; 37-37 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://mabvii.qi.fcen.uba.ar/ |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.coverage.none.fl_str_mv |
Nacional |
dc.publisher.none.fl_str_mv |
Universidad de Buenos Aires |
publisher.none.fl_str_mv |
Universidad de Buenos Aires |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842270060361547776 |
score |
13.13397 |