Effects of temperature on responses to anoxia and oxygen reperfusion in Drosophila melanogaster

Autores
Schilman, Pablo Ernesto; Waters, James S.; Harrison, Jon F.; Lighton, John R. B.
Año de publicación
2011
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Insects in general, and Drosophila in particular, are much more capable of surviving anoxia than vertebrates, and the mechanisms involved are of considerable biomedical and ecological interest. Temperature is likely to strongly affect both the rates of damage occurring in anoxia and the recovery processes in normoxia, but as yet there is no information on the effect of this crucial variable on recovery rates from anoxia in any animal. We studied the effects of temperature, and thus indirectly of metabolic flux rates, on survival and recovery times of individual male Drosophila melanogaster following anoxia and O2 reperfusion. Individual flies were reared at 25° and exposed to an anoxic period of 7.5, 25, 42.5 or 60?min at 20, 25 or 30°. Before, during and after anoxic exposure the flies' metabolic rates (MRs), rates of water loss and activity indices were recorded. Temperature strongly affected the MR of the flies, with a Q10 of 2.21. Temperature did not affect the slope of the relationship between time to recovery and duration of anoxic exposure, suggesting that thermal effects on damage and repair rates were similar. However, the intercept of that relationship was significantly lower (i.e. recovery was most rapid) at 25°, which was the rearing temperature. When temperatures during exposure to anoxia and during recovery were switched, recovery times matched those predicted from a model in which the accumulation and clearance of metabolic end-products share a similar dependence on temperature.
Fil: Schilman, Pablo Ernesto. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Biodiversidad y Biología Experimental; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Waters, James S.. Arizona State University; Estados Unidos
Fil: Harrison, Jon F.. Arizona State University; Estados Unidos
Fil: Lighton, John R. B.. University of Nevada at Las Vegas; Estados Unidos
Materia
INSECT
ISCHEMIA
O2 PRODUCTION
REPERFUSION DAMAGE
TEMPERATURE
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/68383

id CONICETDig_099242b16452b65df76766333d5bbb17
oai_identifier_str oai:ri.conicet.gov.ar:11336/68383
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Effects of temperature on responses to anoxia and oxygen reperfusion in Drosophila melanogasterSchilman, Pablo ErnestoWaters, James S.Harrison, Jon F.Lighton, John R. B.INSECTISCHEMIAO2 PRODUCTIONREPERFUSION DAMAGETEMPERATUREhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Insects in general, and Drosophila in particular, are much more capable of surviving anoxia than vertebrates, and the mechanisms involved are of considerable biomedical and ecological interest. Temperature is likely to strongly affect both the rates of damage occurring in anoxia and the recovery processes in normoxia, but as yet there is no information on the effect of this crucial variable on recovery rates from anoxia in any animal. We studied the effects of temperature, and thus indirectly of metabolic flux rates, on survival and recovery times of individual male Drosophila melanogaster following anoxia and O2 reperfusion. Individual flies were reared at 25° and exposed to an anoxic period of 7.5, 25, 42.5 or 60?min at 20, 25 or 30°. Before, during and after anoxic exposure the flies' metabolic rates (MRs), rates of water loss and activity indices were recorded. Temperature strongly affected the MR of the flies, with a Q10 of 2.21. Temperature did not affect the slope of the relationship between time to recovery and duration of anoxic exposure, suggesting that thermal effects on damage and repair rates were similar. However, the intercept of that relationship was significantly lower (i.e. recovery was most rapid) at 25°, which was the rearing temperature. When temperatures during exposure to anoxia and during recovery were switched, recovery times matched those predicted from a model in which the accumulation and clearance of metabolic end-products share a similar dependence on temperature.Fil: Schilman, Pablo Ernesto. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Biodiversidad y Biología Experimental; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Waters, James S.. Arizona State University; Estados UnidosFil: Harrison, Jon F.. Arizona State University; Estados UnidosFil: Lighton, John R. B.. University of Nevada at Las Vegas; Estados UnidosCompany of Biologists2011-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/68383Schilman, Pablo Ernesto; Waters, James S.; Harrison, Jon F.; Lighton, John R. B.; Effects of temperature on responses to anoxia and oxygen reperfusion in Drosophila melanogaster; Company of Biologists; Journal of Experimental Biology; 214; 8; 4-2011; 1271-12750022-0949CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1242/jeb.052357info:eu-repo/semantics/altIdentifier/url/http://jeb.biologists.org/content/214/8/1271info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-12T09:35:53Zoai:ri.conicet.gov.ar:11336/68383instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-12 09:35:53.751CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Effects of temperature on responses to anoxia and oxygen reperfusion in Drosophila melanogaster
title Effects of temperature on responses to anoxia and oxygen reperfusion in Drosophila melanogaster
spellingShingle Effects of temperature on responses to anoxia and oxygen reperfusion in Drosophila melanogaster
Schilman, Pablo Ernesto
INSECT
ISCHEMIA
O2 PRODUCTION
REPERFUSION DAMAGE
TEMPERATURE
title_short Effects of temperature on responses to anoxia and oxygen reperfusion in Drosophila melanogaster
title_full Effects of temperature on responses to anoxia and oxygen reperfusion in Drosophila melanogaster
title_fullStr Effects of temperature on responses to anoxia and oxygen reperfusion in Drosophila melanogaster
title_full_unstemmed Effects of temperature on responses to anoxia and oxygen reperfusion in Drosophila melanogaster
title_sort Effects of temperature on responses to anoxia and oxygen reperfusion in Drosophila melanogaster
dc.creator.none.fl_str_mv Schilman, Pablo Ernesto
Waters, James S.
Harrison, Jon F.
Lighton, John R. B.
author Schilman, Pablo Ernesto
author_facet Schilman, Pablo Ernesto
Waters, James S.
Harrison, Jon F.
Lighton, John R. B.
author_role author
author2 Waters, James S.
Harrison, Jon F.
Lighton, John R. B.
author2_role author
author
author
dc.subject.none.fl_str_mv INSECT
ISCHEMIA
O2 PRODUCTION
REPERFUSION DAMAGE
TEMPERATURE
topic INSECT
ISCHEMIA
O2 PRODUCTION
REPERFUSION DAMAGE
TEMPERATURE
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Insects in general, and Drosophila in particular, are much more capable of surviving anoxia than vertebrates, and the mechanisms involved are of considerable biomedical and ecological interest. Temperature is likely to strongly affect both the rates of damage occurring in anoxia and the recovery processes in normoxia, but as yet there is no information on the effect of this crucial variable on recovery rates from anoxia in any animal. We studied the effects of temperature, and thus indirectly of metabolic flux rates, on survival and recovery times of individual male Drosophila melanogaster following anoxia and O2 reperfusion. Individual flies were reared at 25° and exposed to an anoxic period of 7.5, 25, 42.5 or 60?min at 20, 25 or 30°. Before, during and after anoxic exposure the flies' metabolic rates (MRs), rates of water loss and activity indices were recorded. Temperature strongly affected the MR of the flies, with a Q10 of 2.21. Temperature did not affect the slope of the relationship between time to recovery and duration of anoxic exposure, suggesting that thermal effects on damage and repair rates were similar. However, the intercept of that relationship was significantly lower (i.e. recovery was most rapid) at 25°, which was the rearing temperature. When temperatures during exposure to anoxia and during recovery were switched, recovery times matched those predicted from a model in which the accumulation and clearance of metabolic end-products share a similar dependence on temperature.
Fil: Schilman, Pablo Ernesto. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Biodiversidad y Biología Experimental; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Waters, James S.. Arizona State University; Estados Unidos
Fil: Harrison, Jon F.. Arizona State University; Estados Unidos
Fil: Lighton, John R. B.. University of Nevada at Las Vegas; Estados Unidos
description Insects in general, and Drosophila in particular, are much more capable of surviving anoxia than vertebrates, and the mechanisms involved are of considerable biomedical and ecological interest. Temperature is likely to strongly affect both the rates of damage occurring in anoxia and the recovery processes in normoxia, but as yet there is no information on the effect of this crucial variable on recovery rates from anoxia in any animal. We studied the effects of temperature, and thus indirectly of metabolic flux rates, on survival and recovery times of individual male Drosophila melanogaster following anoxia and O2 reperfusion. Individual flies were reared at 25° and exposed to an anoxic period of 7.5, 25, 42.5 or 60?min at 20, 25 or 30°. Before, during and after anoxic exposure the flies' metabolic rates (MRs), rates of water loss and activity indices were recorded. Temperature strongly affected the MR of the flies, with a Q10 of 2.21. Temperature did not affect the slope of the relationship between time to recovery and duration of anoxic exposure, suggesting that thermal effects on damage and repair rates were similar. However, the intercept of that relationship was significantly lower (i.e. recovery was most rapid) at 25°, which was the rearing temperature. When temperatures during exposure to anoxia and during recovery were switched, recovery times matched those predicted from a model in which the accumulation and clearance of metabolic end-products share a similar dependence on temperature.
publishDate 2011
dc.date.none.fl_str_mv 2011-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/68383
Schilman, Pablo Ernesto; Waters, James S.; Harrison, Jon F.; Lighton, John R. B.; Effects of temperature on responses to anoxia and oxygen reperfusion in Drosophila melanogaster; Company of Biologists; Journal of Experimental Biology; 214; 8; 4-2011; 1271-1275
0022-0949
CONICET Digital
CONICET
url http://hdl.handle.net/11336/68383
identifier_str_mv Schilman, Pablo Ernesto; Waters, James S.; Harrison, Jon F.; Lighton, John R. B.; Effects of temperature on responses to anoxia and oxygen reperfusion in Drosophila melanogaster; Company of Biologists; Journal of Experimental Biology; 214; 8; 4-2011; 1271-1275
0022-0949
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1242/jeb.052357
info:eu-repo/semantics/altIdentifier/url/http://jeb.biologists.org/content/214/8/1271
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Company of Biologists
publisher.none.fl_str_mv Company of Biologists
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1848597223399489536
score 12.976206