Clinical diagnosis of COVID-19. A multivariate logistic regression analysis of symptoms of COVID-19 at presentation
- Autores
- Fleitas, Pedro Emanuel; Paz, Jorge Augusto; Simoy, Mario Ignacio; Vargas, Carlos; Cimino, Rubén Oscar; Krolewiecki, Alejandro Javier; Aparicio, Juan Pablo
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Introduction The objective of this cross-sectional study was to describe the main symptoms associated with COVID-19, and their diagnostic characteristics, to aid in the clinical diagnosis. Methods An analysis of all patients diagnosed by RT-PCR for SARS-CoV-2 between April and May 2020 in Argentina was conducted. The data includes clinical and demographic information from all subjects at the time of presentation (n=67318, where 12% were positive for SARS-CoV-2). The study population was divided into four age groups: pediatric (0-17 years), young adults (18-44 years), adults (45-64 years), and elderly (65-103 years). Multivariate logistic regression was used to measure the association of all symptoms and to create a diagnostic model based on symptoms.Results Symptoms associated with COVID-19 were anosmia, dysgeusia, headache, low-grade fever,odynophagia, and malaise. However, the presentation of these symptoms was different between thedifferent age groups. In turn, at the time of presentation, the symptoms associated with respiratoryproblems (chest pain, abdominal pain, and dyspnea) had a negative association with COVID-19 or did not present statistical relevance. On the other hand, the model based on 16 symptoms, age and sex, presented a sensitivity of 80% and a specificity of 46%.Conclusions There were significant differences between the different age groups. Additionally, therewere interactions between different symptoms that were highly associated with COVID-19. Finally, our findings showed that a regression model based on multiple factors (age, sex, interaction between symptoms) can be used as an accessory diagnostic method or a rapid screening of suspected COVID-19 cases.
Fil: Fleitas, Pedro Emanuel. Universidad Nacional de Salta. Sede Regional Orán. Instituto de Investigación de Enfermedades Tropicales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Paz, Jorge Augusto. Universidad Nacional de Salta. Facultad de Ciencias Económicas, Jurídicas y Sociales. Instituto de Estudios Laborales y del Desarrollo Económico; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Simoy, Mario Ignacio. Universidad Nacional de Salta. Facultad de Cs.exactas. Departamento de Física. Instituto de Energias No Convencionales; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Instituto Multidisciplinario sobre Ecosistemas y Desarrollo Sustentable. Grupo de Ecología Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones en Energía no Convencional. Grupo Vinculado al INENCO - Instituto de Investigaciones y Políticas del Ambiente Constituido | Universidad Nacional de Salta. Facultad de Cienicas Exactas. Departamento de Física. Instituto de Investigaciones en Energía no Convencional. Grupo Vinculado al INENCO - Instituto de Investigaciones y Políticas del Ambiente Constituido; Argentina
Fil: Vargas, Carlos. Universidad Nacional del Litoral. Facultad de Ciencias Económicas. Instituto de Investigación Estado, Territorio y Economía; Argentina
Fil: Cimino, Rubén Oscar. Universidad Nacional de Salta. Sede Regional Orán. Instituto de Investigación de Enfermedades Tropicales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Krolewiecki, Alejandro Javier. Universidad Nacional de Salta. Sede Regional Orán. Instituto de Investigación de Enfermedades Tropicales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Aparicio, Juan Pablo. Universidad Nacional de Salta. Facultad de Cs.exactas. Departamento de Física. Instituto de Energias No Convencionales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
COVID-19
SYMPTOMS
CLINICAL DIAGNOSIS. - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/136995
Ver los metadatos del registro completo
id |
CONICETDig_097ce49cc34608a4573b0a24eff185e5 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/136995 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Clinical diagnosis of COVID-19. A multivariate logistic regression analysis of symptoms of COVID-19 at presentationFleitas, Pedro EmanuelPaz, Jorge AugustoSimoy, Mario IgnacioVargas, CarlosCimino, Rubén OscarKrolewiecki, Alejandro JavierAparicio, Juan PabloCOVID-19SYMPTOMSCLINICAL DIAGNOSIS.https://purl.org/becyt/ford/3.2https://purl.org/becyt/ford/3Introduction The objective of this cross-sectional study was to describe the main symptoms associated with COVID-19, and their diagnostic characteristics, to aid in the clinical diagnosis. Methods An analysis of all patients diagnosed by RT-PCR for SARS-CoV-2 between April and May 2020 in Argentina was conducted. The data includes clinical and demographic information from all subjects at the time of presentation (n=67318, where 12% were positive for SARS-CoV-2). The study population was divided into four age groups: pediatric (0-17 years), young adults (18-44 years), adults (45-64 years), and elderly (65-103 years). Multivariate logistic regression was used to measure the association of all symptoms and to create a diagnostic model based on symptoms.Results Symptoms associated with COVID-19 were anosmia, dysgeusia, headache, low-grade fever,odynophagia, and malaise. However, the presentation of these symptoms was different between thedifferent age groups. In turn, at the time of presentation, the symptoms associated with respiratoryproblems (chest pain, abdominal pain, and dyspnea) had a negative association with COVID-19 or did not present statistical relevance. On the other hand, the model based on 16 symptoms, age and sex, presented a sensitivity of 80% and a specificity of 46%.Conclusions There were significant differences between the different age groups. Additionally, therewere interactions between different symptoms that were highly associated with COVID-19. Finally, our findings showed that a regression model based on multiple factors (age, sex, interaction between symptoms) can be used as an accessory diagnostic method or a rapid screening of suspected COVID-19 cases.Fil: Fleitas, Pedro Emanuel. Universidad Nacional de Salta. Sede Regional Orán. Instituto de Investigación de Enfermedades Tropicales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Paz, Jorge Augusto. Universidad Nacional de Salta. Facultad de Ciencias Económicas, Jurídicas y Sociales. Instituto de Estudios Laborales y del Desarrollo Económico; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Simoy, Mario Ignacio. Universidad Nacional de Salta. Facultad de Cs.exactas. Departamento de Física. Instituto de Energias No Convencionales; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Instituto Multidisciplinario sobre Ecosistemas y Desarrollo Sustentable. Grupo de Ecología Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones en Energía no Convencional. Grupo Vinculado al INENCO - Instituto de Investigaciones y Políticas del Ambiente Constituido | Universidad Nacional de Salta. Facultad de Cienicas Exactas. Departamento de Física. Instituto de Investigaciones en Energía no Convencional. Grupo Vinculado al INENCO - Instituto de Investigaciones y Políticas del Ambiente Constituido; ArgentinaFil: Vargas, Carlos. Universidad Nacional del Litoral. Facultad de Ciencias Económicas. Instituto de Investigación Estado, Territorio y Economía; ArgentinaFil: Cimino, Rubén Oscar. Universidad Nacional de Salta. Sede Regional Orán. Instituto de Investigación de Enfermedades Tropicales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Krolewiecki, Alejandro Javier. Universidad Nacional de Salta. Sede Regional Orán. Instituto de Investigación de Enfermedades Tropicales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Aparicio, Juan Pablo. Universidad Nacional de Salta. Facultad de Cs.exactas. Departamento de Física. Instituto de Energias No Convencionales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaEuropean Academy of HIV/AIDS and Infectious Diseases2021-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/136995Fleitas, Pedro Emanuel; Paz, Jorge Augusto; Simoy, Mario Ignacio; Vargas, Carlos; Cimino, Rubén Oscar; et al.; Clinical diagnosis of COVID-19. A multivariate logistic regression analysis of symptoms of COVID-19 at presentation; European Academy of HIV/AIDS and Infectious Diseases; Germs; 11; 2; 7-2021; 221-2372248-2997CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.germs.ro/en/Homepage/info:eu-repo/semantics/altIdentifier/doi/ 10.18683/germs.2021.1259info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:03:21Zoai:ri.conicet.gov.ar:11336/136995instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:03:21.476CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Clinical diagnosis of COVID-19. A multivariate logistic regression analysis of symptoms of COVID-19 at presentation |
title |
Clinical diagnosis of COVID-19. A multivariate logistic regression analysis of symptoms of COVID-19 at presentation |
spellingShingle |
Clinical diagnosis of COVID-19. A multivariate logistic regression analysis of symptoms of COVID-19 at presentation Fleitas, Pedro Emanuel COVID-19 SYMPTOMS CLINICAL DIAGNOSIS. |
title_short |
Clinical diagnosis of COVID-19. A multivariate logistic regression analysis of symptoms of COVID-19 at presentation |
title_full |
Clinical diagnosis of COVID-19. A multivariate logistic regression analysis of symptoms of COVID-19 at presentation |
title_fullStr |
Clinical diagnosis of COVID-19. A multivariate logistic regression analysis of symptoms of COVID-19 at presentation |
title_full_unstemmed |
Clinical diagnosis of COVID-19. A multivariate logistic regression analysis of symptoms of COVID-19 at presentation |
title_sort |
Clinical diagnosis of COVID-19. A multivariate logistic regression analysis of symptoms of COVID-19 at presentation |
dc.creator.none.fl_str_mv |
Fleitas, Pedro Emanuel Paz, Jorge Augusto Simoy, Mario Ignacio Vargas, Carlos Cimino, Rubén Oscar Krolewiecki, Alejandro Javier Aparicio, Juan Pablo |
author |
Fleitas, Pedro Emanuel |
author_facet |
Fleitas, Pedro Emanuel Paz, Jorge Augusto Simoy, Mario Ignacio Vargas, Carlos Cimino, Rubén Oscar Krolewiecki, Alejandro Javier Aparicio, Juan Pablo |
author_role |
author |
author2 |
Paz, Jorge Augusto Simoy, Mario Ignacio Vargas, Carlos Cimino, Rubén Oscar Krolewiecki, Alejandro Javier Aparicio, Juan Pablo |
author2_role |
author author author author author author |
dc.subject.none.fl_str_mv |
COVID-19 SYMPTOMS CLINICAL DIAGNOSIS. |
topic |
COVID-19 SYMPTOMS CLINICAL DIAGNOSIS. |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/3.2 https://purl.org/becyt/ford/3 |
dc.description.none.fl_txt_mv |
Introduction The objective of this cross-sectional study was to describe the main symptoms associated with COVID-19, and their diagnostic characteristics, to aid in the clinical diagnosis. Methods An analysis of all patients diagnosed by RT-PCR for SARS-CoV-2 between April and May 2020 in Argentina was conducted. The data includes clinical and demographic information from all subjects at the time of presentation (n=67318, where 12% were positive for SARS-CoV-2). The study population was divided into four age groups: pediatric (0-17 years), young adults (18-44 years), adults (45-64 years), and elderly (65-103 years). Multivariate logistic regression was used to measure the association of all symptoms and to create a diagnostic model based on symptoms.Results Symptoms associated with COVID-19 were anosmia, dysgeusia, headache, low-grade fever,odynophagia, and malaise. However, the presentation of these symptoms was different between thedifferent age groups. In turn, at the time of presentation, the symptoms associated with respiratoryproblems (chest pain, abdominal pain, and dyspnea) had a negative association with COVID-19 or did not present statistical relevance. On the other hand, the model based on 16 symptoms, age and sex, presented a sensitivity of 80% and a specificity of 46%.Conclusions There were significant differences between the different age groups. Additionally, therewere interactions between different symptoms that were highly associated with COVID-19. Finally, our findings showed that a regression model based on multiple factors (age, sex, interaction between symptoms) can be used as an accessory diagnostic method or a rapid screening of suspected COVID-19 cases. Fil: Fleitas, Pedro Emanuel. Universidad Nacional de Salta. Sede Regional Orán. Instituto de Investigación de Enfermedades Tropicales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Paz, Jorge Augusto. Universidad Nacional de Salta. Facultad de Ciencias Económicas, Jurídicas y Sociales. Instituto de Estudios Laborales y del Desarrollo Económico; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Simoy, Mario Ignacio. Universidad Nacional de Salta. Facultad de Cs.exactas. Departamento de Física. Instituto de Energias No Convencionales; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Instituto Multidisciplinario sobre Ecosistemas y Desarrollo Sustentable. Grupo de Ecología Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones en Energía no Convencional. Grupo Vinculado al INENCO - Instituto de Investigaciones y Políticas del Ambiente Constituido | Universidad Nacional de Salta. Facultad de Cienicas Exactas. Departamento de Física. Instituto de Investigaciones en Energía no Convencional. Grupo Vinculado al INENCO - Instituto de Investigaciones y Políticas del Ambiente Constituido; Argentina Fil: Vargas, Carlos. Universidad Nacional del Litoral. Facultad de Ciencias Económicas. Instituto de Investigación Estado, Territorio y Economía; Argentina Fil: Cimino, Rubén Oscar. Universidad Nacional de Salta. Sede Regional Orán. Instituto de Investigación de Enfermedades Tropicales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Krolewiecki, Alejandro Javier. Universidad Nacional de Salta. Sede Regional Orán. Instituto de Investigación de Enfermedades Tropicales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Aparicio, Juan Pablo. Universidad Nacional de Salta. Facultad de Cs.exactas. Departamento de Física. Instituto de Energias No Convencionales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
Introduction The objective of this cross-sectional study was to describe the main symptoms associated with COVID-19, and their diagnostic characteristics, to aid in the clinical diagnosis. Methods An analysis of all patients diagnosed by RT-PCR for SARS-CoV-2 between April and May 2020 in Argentina was conducted. The data includes clinical and demographic information from all subjects at the time of presentation (n=67318, where 12% were positive for SARS-CoV-2). The study population was divided into four age groups: pediatric (0-17 years), young adults (18-44 years), adults (45-64 years), and elderly (65-103 years). Multivariate logistic regression was used to measure the association of all symptoms and to create a diagnostic model based on symptoms.Results Symptoms associated with COVID-19 were anosmia, dysgeusia, headache, low-grade fever,odynophagia, and malaise. However, the presentation of these symptoms was different between thedifferent age groups. In turn, at the time of presentation, the symptoms associated with respiratoryproblems (chest pain, abdominal pain, and dyspnea) had a negative association with COVID-19 or did not present statistical relevance. On the other hand, the model based on 16 symptoms, age and sex, presented a sensitivity of 80% and a specificity of 46%.Conclusions There were significant differences between the different age groups. Additionally, therewere interactions between different symptoms that were highly associated with COVID-19. Finally, our findings showed that a regression model based on multiple factors (age, sex, interaction between symptoms) can be used as an accessory diagnostic method or a rapid screening of suspected COVID-19 cases. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/136995 Fleitas, Pedro Emanuel; Paz, Jorge Augusto; Simoy, Mario Ignacio; Vargas, Carlos; Cimino, Rubén Oscar; et al.; Clinical diagnosis of COVID-19. A multivariate logistic regression analysis of symptoms of COVID-19 at presentation; European Academy of HIV/AIDS and Infectious Diseases; Germs; 11; 2; 7-2021; 221-237 2248-2997 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/136995 |
identifier_str_mv |
Fleitas, Pedro Emanuel; Paz, Jorge Augusto; Simoy, Mario Ignacio; Vargas, Carlos; Cimino, Rubén Oscar; et al.; Clinical diagnosis of COVID-19. A multivariate logistic regression analysis of symptoms of COVID-19 at presentation; European Academy of HIV/AIDS and Infectious Diseases; Germs; 11; 2; 7-2021; 221-237 2248-2997 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.germs.ro/en/Homepage/ info:eu-repo/semantics/altIdentifier/doi/ 10.18683/germs.2021.1259 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
European Academy of HIV/AIDS and Infectious Diseases |
publisher.none.fl_str_mv |
European Academy of HIV/AIDS and Infectious Diseases |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613848729911296 |
score |
13.069144 |