Asymptotic theory for maximum likelihood estimates in reduced-rank multivariate generalized linear models
- Autores
- Bura, Efstathia; Duarte, S.; Forzani, Liliana Maria; Smucler, Ezequiel; Sued, Raquel Mariela
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Reduced-rank regression is a dimensionality reduction method with many applications. The asymptotic theory for reduced rank estimators of parameter matrices in multivariate linear models has been studied extensively. In contrast, few theoretical results are available for reduced-rank multivariate generalized linear models. We develop M-estimation theory for concave criterion functions that are maximized over parameter spaces that are neither convex nor closed. These results are used to derive the consistency and asymptotic distribution of maximum likelihood estimators in reduced-rank multivariate generalized linear models, when the response and predictor vectors have a joint distribution. We illustrate our results in a real data classification problem with binary covariates.
Fil: Bura, Efstathia. The George Washington University; Estados Unidos. Vienna University of Technology; Austria
Fil: Duarte, S.. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina
Fil: Forzani, Liliana Maria. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina
Fil: Smucler, Ezequiel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Sued, Raquel Mariela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
EXPONENTIAL FAMILY
M-ESTIMATION
NON-CONVEX
PARAMETER SPACES
RANK RESTRICTION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/162204
Ver los metadatos del registro completo
| id |
CONICETDig_0973486a16410206ae55f87bb0391c6a |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/162204 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Asymptotic theory for maximum likelihood estimates in reduced-rank multivariate generalized linear modelsBura, EfstathiaDuarte, S.Forzani, Liliana MariaSmucler, EzequielSued, Raquel MarielaEXPONENTIAL FAMILYM-ESTIMATIONNON-CONVEXPARAMETER SPACESRANK RESTRICTIONhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Reduced-rank regression is a dimensionality reduction method with many applications. The asymptotic theory for reduced rank estimators of parameter matrices in multivariate linear models has been studied extensively. In contrast, few theoretical results are available for reduced-rank multivariate generalized linear models. We develop M-estimation theory for concave criterion functions that are maximized over parameter spaces that are neither convex nor closed. These results are used to derive the consistency and asymptotic distribution of maximum likelihood estimators in reduced-rank multivariate generalized linear models, when the response and predictor vectors have a joint distribution. We illustrate our results in a real data classification problem with binary covariates.Fil: Bura, Efstathia. The George Washington University; Estados Unidos. Vienna University of Technology; AustriaFil: Duarte, S.. Universidad Nacional del Litoral. Facultad de Ingeniería Química; ArgentinaFil: Forzani, Liliana Maria. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química; ArgentinaFil: Smucler, Ezequiel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Sued, Raquel Mariela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaTaylor & Francis Ltd2018-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/162204Bura, Efstathia; Duarte, S.; Forzani, Liliana Maria; Smucler, Ezequiel; Sued, Raquel Mariela; Asymptotic theory for maximum likelihood estimates in reduced-rank multivariate generalized linear models; Taylor & Francis Ltd; Statistics; 52; 5; 9-2018; 1005-10240233-1888CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/full/10.1080/02331888.2018.1467420info:eu-repo/semantics/altIdentifier/doi/10.1080/02331888.2018.1467420info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-29T11:42:12Zoai:ri.conicet.gov.ar:11336/162204instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-29 11:42:13.189CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Asymptotic theory for maximum likelihood estimates in reduced-rank multivariate generalized linear models |
| title |
Asymptotic theory for maximum likelihood estimates in reduced-rank multivariate generalized linear models |
| spellingShingle |
Asymptotic theory for maximum likelihood estimates in reduced-rank multivariate generalized linear models Bura, Efstathia EXPONENTIAL FAMILY M-ESTIMATION NON-CONVEX PARAMETER SPACES RANK RESTRICTION |
| title_short |
Asymptotic theory for maximum likelihood estimates in reduced-rank multivariate generalized linear models |
| title_full |
Asymptotic theory for maximum likelihood estimates in reduced-rank multivariate generalized linear models |
| title_fullStr |
Asymptotic theory for maximum likelihood estimates in reduced-rank multivariate generalized linear models |
| title_full_unstemmed |
Asymptotic theory for maximum likelihood estimates in reduced-rank multivariate generalized linear models |
| title_sort |
Asymptotic theory for maximum likelihood estimates in reduced-rank multivariate generalized linear models |
| dc.creator.none.fl_str_mv |
Bura, Efstathia Duarte, S. Forzani, Liliana Maria Smucler, Ezequiel Sued, Raquel Mariela |
| author |
Bura, Efstathia |
| author_facet |
Bura, Efstathia Duarte, S. Forzani, Liliana Maria Smucler, Ezequiel Sued, Raquel Mariela |
| author_role |
author |
| author2 |
Duarte, S. Forzani, Liliana Maria Smucler, Ezequiel Sued, Raquel Mariela |
| author2_role |
author author author author |
| dc.subject.none.fl_str_mv |
EXPONENTIAL FAMILY M-ESTIMATION NON-CONVEX PARAMETER SPACES RANK RESTRICTION |
| topic |
EXPONENTIAL FAMILY M-ESTIMATION NON-CONVEX PARAMETER SPACES RANK RESTRICTION |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
Reduced-rank regression is a dimensionality reduction method with many applications. The asymptotic theory for reduced rank estimators of parameter matrices in multivariate linear models has been studied extensively. In contrast, few theoretical results are available for reduced-rank multivariate generalized linear models. We develop M-estimation theory for concave criterion functions that are maximized over parameter spaces that are neither convex nor closed. These results are used to derive the consistency and asymptotic distribution of maximum likelihood estimators in reduced-rank multivariate generalized linear models, when the response and predictor vectors have a joint distribution. We illustrate our results in a real data classification problem with binary covariates. Fil: Bura, Efstathia. The George Washington University; Estados Unidos. Vienna University of Technology; Austria Fil: Duarte, S.. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina Fil: Forzani, Liliana Maria. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina Fil: Smucler, Ezequiel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Sued, Raquel Mariela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
| description |
Reduced-rank regression is a dimensionality reduction method with many applications. The asymptotic theory for reduced rank estimators of parameter matrices in multivariate linear models has been studied extensively. In contrast, few theoretical results are available for reduced-rank multivariate generalized linear models. We develop M-estimation theory for concave criterion functions that are maximized over parameter spaces that are neither convex nor closed. These results are used to derive the consistency and asymptotic distribution of maximum likelihood estimators in reduced-rank multivariate generalized linear models, when the response and predictor vectors have a joint distribution. We illustrate our results in a real data classification problem with binary covariates. |
| publishDate |
2018 |
| dc.date.none.fl_str_mv |
2018-09 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/162204 Bura, Efstathia; Duarte, S.; Forzani, Liliana Maria; Smucler, Ezequiel; Sued, Raquel Mariela; Asymptotic theory for maximum likelihood estimates in reduced-rank multivariate generalized linear models; Taylor & Francis Ltd; Statistics; 52; 5; 9-2018; 1005-1024 0233-1888 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/162204 |
| identifier_str_mv |
Bura, Efstathia; Duarte, S.; Forzani, Liliana Maria; Smucler, Ezequiel; Sued, Raquel Mariela; Asymptotic theory for maximum likelihood estimates in reduced-rank multivariate generalized linear models; Taylor & Francis Ltd; Statistics; 52; 5; 9-2018; 1005-1024 0233-1888 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/full/10.1080/02331888.2018.1467420 info:eu-repo/semantics/altIdentifier/doi/10.1080/02331888.2018.1467420 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Taylor & Francis Ltd |
| publisher.none.fl_str_mv |
Taylor & Francis Ltd |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1847426333229973504 |
| score |
13.10058 |