Eigenvalue homogenisation problem with indefinite weights

Autores
Fernandez Bonder, Julian; Pinasco, Juan Pablo; Salort, Ariel Martin
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this work we study the homogenisation problem for nonlinear elliptic equations involving p-Laplaciantype operators with sign-changing weights. We study the asymptotic behaviour of variational eigenvalues which consist of a double sequence of eigenvalues. We show that the kth positive eigenvalue goes to infinity when the average of the weights is nonpositive, and converges to the kth variational eigenvalue of the limit problem when the average is positive for any k ≥ 1.
Fil: Fernandez Bonder, Julian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina
Fil: Pinasco, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina
Fil: Salort, Ariel Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina
Materia
EIGENVALUES
HOMOGENISATION
INDEFINITE WEIGHTS
P-LAPLACE-TYPE PROBLEMS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/55421

id CONICETDig_095fb5e3c11aeddc802330596f14ae4a
oai_identifier_str oai:ri.conicet.gov.ar:11336/55421
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Eigenvalue homogenisation problem with indefinite weightsFernandez Bonder, JulianPinasco, Juan PabloSalort, Ariel MartinEIGENVALUESHOMOGENISATIONINDEFINITE WEIGHTSP-LAPLACE-TYPE PROBLEMShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this work we study the homogenisation problem for nonlinear elliptic equations involving p-Laplaciantype operators with sign-changing weights. We study the asymptotic behaviour of variational eigenvalues which consist of a double sequence of eigenvalues. We show that the kth positive eigenvalue goes to infinity when the average of the weights is nonpositive, and converges to the kth variational eigenvalue of the limit problem when the average is positive for any k ≥ 1.Fil: Fernandez Bonder, Julian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; ArgentinaFil: Pinasco, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; ArgentinaFil: Salort, Ariel Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; ArgentinaAustralian Mathematics Publ Assoc Inc2016-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/55421Fernandez Bonder, Julian; Pinasco, Juan Pablo; Salort, Ariel Martin; Eigenvalue homogenisation problem with indefinite weights; Australian Mathematics Publ Assoc Inc; Bulletin Of The Australian Mathematical Society; 93; 1; 2-2016; 113-1270004-9727CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.cambridge.org/core/journals/bulletin-of-the-australian-mathematical-society/article/eigenvalue-homogenisation-problem-with-indefinite-weights/2291D93100261910D0F5E6CB493647A4info:eu-repo/semantics/altIdentifier/doi/10.1017/S0004972715001094info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-12-23T14:36:02Zoai:ri.conicet.gov.ar:11336/55421instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-12-23 14:36:02.93CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Eigenvalue homogenisation problem with indefinite weights
title Eigenvalue homogenisation problem with indefinite weights
spellingShingle Eigenvalue homogenisation problem with indefinite weights
Fernandez Bonder, Julian
EIGENVALUES
HOMOGENISATION
INDEFINITE WEIGHTS
P-LAPLACE-TYPE PROBLEMS
title_short Eigenvalue homogenisation problem with indefinite weights
title_full Eigenvalue homogenisation problem with indefinite weights
title_fullStr Eigenvalue homogenisation problem with indefinite weights
title_full_unstemmed Eigenvalue homogenisation problem with indefinite weights
title_sort Eigenvalue homogenisation problem with indefinite weights
dc.creator.none.fl_str_mv Fernandez Bonder, Julian
Pinasco, Juan Pablo
Salort, Ariel Martin
author Fernandez Bonder, Julian
author_facet Fernandez Bonder, Julian
Pinasco, Juan Pablo
Salort, Ariel Martin
author_role author
author2 Pinasco, Juan Pablo
Salort, Ariel Martin
author2_role author
author
dc.subject.none.fl_str_mv EIGENVALUES
HOMOGENISATION
INDEFINITE WEIGHTS
P-LAPLACE-TYPE PROBLEMS
topic EIGENVALUES
HOMOGENISATION
INDEFINITE WEIGHTS
P-LAPLACE-TYPE PROBLEMS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this work we study the homogenisation problem for nonlinear elliptic equations involving p-Laplaciantype operators with sign-changing weights. We study the asymptotic behaviour of variational eigenvalues which consist of a double sequence of eigenvalues. We show that the kth positive eigenvalue goes to infinity when the average of the weights is nonpositive, and converges to the kth variational eigenvalue of the limit problem when the average is positive for any k ≥ 1.
Fil: Fernandez Bonder, Julian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina
Fil: Pinasco, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina
Fil: Salort, Ariel Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina
description In this work we study the homogenisation problem for nonlinear elliptic equations involving p-Laplaciantype operators with sign-changing weights. We study the asymptotic behaviour of variational eigenvalues which consist of a double sequence of eigenvalues. We show that the kth positive eigenvalue goes to infinity when the average of the weights is nonpositive, and converges to the kth variational eigenvalue of the limit problem when the average is positive for any k ≥ 1.
publishDate 2016
dc.date.none.fl_str_mv 2016-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/55421
Fernandez Bonder, Julian; Pinasco, Juan Pablo; Salort, Ariel Martin; Eigenvalue homogenisation problem with indefinite weights; Australian Mathematics Publ Assoc Inc; Bulletin Of The Australian Mathematical Society; 93; 1; 2-2016; 113-127
0004-9727
CONICET Digital
CONICET
url http://hdl.handle.net/11336/55421
identifier_str_mv Fernandez Bonder, Julian; Pinasco, Juan Pablo; Salort, Ariel Martin; Eigenvalue homogenisation problem with indefinite weights; Australian Mathematics Publ Assoc Inc; Bulletin Of The Australian Mathematical Society; 93; 1; 2-2016; 113-127
0004-9727
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.cambridge.org/core/journals/bulletin-of-the-australian-mathematical-society/article/eigenvalue-homogenisation-problem-with-indefinite-weights/2291D93100261910D0F5E6CB493647A4
info:eu-repo/semantics/altIdentifier/doi/10.1017/S0004972715001094
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Australian Mathematics Publ Assoc Inc
publisher.none.fl_str_mv Australian Mathematics Publ Assoc Inc
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1852335744233766912
score 12.441415