The smallest electrochemical bubbles
- Autores
- Gadea, Esteban David; Pérez Sirkin, Yamila Anahí; Molinero, Valeria; Scherlis Perel, Damian Ariel
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Many of the relevant electrochemical processes in the context of catalysis or energyconversion and storage, entail the production of gases. This often implicates thenucleation of bubbles at the interface, with the concomitant blockage of theelectroactive area leading to overpotentials and Ohmic drop. Nanoelectrodes have beenenvisioned as assets to revert this effect, by inhibiting bubble formation. Experimentsshow, however, that nanobubbles nucleate and attach to nanoscale electrodes, imposinga limit to the current, which turns out to be independent of size and applied potential ina wide range from 3 nm to tenths of microns. Here we investigate the potential-currentresponse for disk electrodes of diameters down to a single-atom, employing molecularsimulations including electrochemical generation of gas. Our analysis reveals thatnanoelectrodes of 1 nm can offer twice as much current as that delivered by electrodeswith areas four orders of magnitude larger at the same bias. This boost in the extractedcurrent is a consequence of the destabilization of the gas phase. The grand potentialof surface nanobubbles shows they can not reach a thermodynamically stable stateon supports below 2 nm. As a result, the electroactive area becomes accessible to thesolution and the current turns out to be sensitive to the electrode radius. In this way,our simulations establish that there is an optimal size for the nanoelectrodes, in betweenthe single-atom and ∼3 nm, that optimizes the gas production.
Fil: Gadea, Esteban David. University of Utah; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina
Fil: Pérez Sirkin, Yamila Anahí. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina
Fil: Molinero, Valeria. University of Utah; Estados Unidos
Fil: Scherlis Perel, Damian Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; Argentina - Materia
-
ELECTROCHEMISTRY
NANOELECTRODES
CATALYSIS
MD-kMC - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/264039
Ver los metadatos del registro completo
id |
CONICETDig_094695f3a2d9499e155239209a927559 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/264039 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
The smallest electrochemical bubblesGadea, Esteban DavidPérez Sirkin, Yamila AnahíMolinero, ValeriaScherlis Perel, Damian ArielELECTROCHEMISTRYNANOELECTRODESCATALYSISMD-kMChttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Many of the relevant electrochemical processes in the context of catalysis or energyconversion and storage, entail the production of gases. This often implicates thenucleation of bubbles at the interface, with the concomitant blockage of theelectroactive area leading to overpotentials and Ohmic drop. Nanoelectrodes have beenenvisioned as assets to revert this effect, by inhibiting bubble formation. Experimentsshow, however, that nanobubbles nucleate and attach to nanoscale electrodes, imposinga limit to the current, which turns out to be independent of size and applied potential ina wide range from 3 nm to tenths of microns. Here we investigate the potential-currentresponse for disk electrodes of diameters down to a single-atom, employing molecularsimulations including electrochemical generation of gas. Our analysis reveals thatnanoelectrodes of 1 nm can offer twice as much current as that delivered by electrodeswith areas four orders of magnitude larger at the same bias. This boost in the extractedcurrent is a consequence of the destabilization of the gas phase. The grand potentialof surface nanobubbles shows they can not reach a thermodynamically stable stateon supports below 2 nm. As a result, the electroactive area becomes accessible to thesolution and the current turns out to be sensitive to the electrode radius. In this way,our simulations establish that there is an optimal size for the nanoelectrodes, in betweenthe single-atom and ∼3 nm, that optimizes the gas production.Fil: Gadea, Esteban David. University of Utah; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaFil: Pérez Sirkin, Yamila Anahí. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaFil: Molinero, Valeria. University of Utah; Estados UnidosFil: Scherlis Perel, Damian Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; ArgentinaNational Academy of Sciences2024-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/264039Gadea, Esteban David; Pérez Sirkin, Yamila Anahí; Molinero, Valeria; Scherlis Perel, Damian Ariel; The smallest electrochemical bubbles; National Academy of Sciences; Proceedings of the National Academy of Sciences of The United States of America; 121; 41; 10-2024; 1-70027-8424CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://pnas.org/doi/10.1073/pnas.2406956121info:eu-repo/semantics/altIdentifier/doi/10.1073/pnas.2406956121info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:56:29Zoai:ri.conicet.gov.ar:11336/264039instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:56:29.353CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
The smallest electrochemical bubbles |
title |
The smallest electrochemical bubbles |
spellingShingle |
The smallest electrochemical bubbles Gadea, Esteban David ELECTROCHEMISTRY NANOELECTRODES CATALYSIS MD-kMC |
title_short |
The smallest electrochemical bubbles |
title_full |
The smallest electrochemical bubbles |
title_fullStr |
The smallest electrochemical bubbles |
title_full_unstemmed |
The smallest electrochemical bubbles |
title_sort |
The smallest electrochemical bubbles |
dc.creator.none.fl_str_mv |
Gadea, Esteban David Pérez Sirkin, Yamila Anahí Molinero, Valeria Scherlis Perel, Damian Ariel |
author |
Gadea, Esteban David |
author_facet |
Gadea, Esteban David Pérez Sirkin, Yamila Anahí Molinero, Valeria Scherlis Perel, Damian Ariel |
author_role |
author |
author2 |
Pérez Sirkin, Yamila Anahí Molinero, Valeria Scherlis Perel, Damian Ariel |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
ELECTROCHEMISTRY NANOELECTRODES CATALYSIS MD-kMC |
topic |
ELECTROCHEMISTRY NANOELECTRODES CATALYSIS MD-kMC |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Many of the relevant electrochemical processes in the context of catalysis or energyconversion and storage, entail the production of gases. This often implicates thenucleation of bubbles at the interface, with the concomitant blockage of theelectroactive area leading to overpotentials and Ohmic drop. Nanoelectrodes have beenenvisioned as assets to revert this effect, by inhibiting bubble formation. Experimentsshow, however, that nanobubbles nucleate and attach to nanoscale electrodes, imposinga limit to the current, which turns out to be independent of size and applied potential ina wide range from 3 nm to tenths of microns. Here we investigate the potential-currentresponse for disk electrodes of diameters down to a single-atom, employing molecularsimulations including electrochemical generation of gas. Our analysis reveals thatnanoelectrodes of 1 nm can offer twice as much current as that delivered by electrodeswith areas four orders of magnitude larger at the same bias. This boost in the extractedcurrent is a consequence of the destabilization of the gas phase. The grand potentialof surface nanobubbles shows they can not reach a thermodynamically stable stateon supports below 2 nm. As a result, the electroactive area becomes accessible to thesolution and the current turns out to be sensitive to the electrode radius. In this way,our simulations establish that there is an optimal size for the nanoelectrodes, in betweenthe single-atom and ∼3 nm, that optimizes the gas production. Fil: Gadea, Esteban David. University of Utah; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina Fil: Pérez Sirkin, Yamila Anahí. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina Fil: Molinero, Valeria. University of Utah; Estados Unidos Fil: Scherlis Perel, Damian Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; Argentina |
description |
Many of the relevant electrochemical processes in the context of catalysis or energyconversion and storage, entail the production of gases. This often implicates thenucleation of bubbles at the interface, with the concomitant blockage of theelectroactive area leading to overpotentials and Ohmic drop. Nanoelectrodes have beenenvisioned as assets to revert this effect, by inhibiting bubble formation. Experimentsshow, however, that nanobubbles nucleate and attach to nanoscale electrodes, imposinga limit to the current, which turns out to be independent of size and applied potential ina wide range from 3 nm to tenths of microns. Here we investigate the potential-currentresponse for disk electrodes of diameters down to a single-atom, employing molecularsimulations including electrochemical generation of gas. Our analysis reveals thatnanoelectrodes of 1 nm can offer twice as much current as that delivered by electrodeswith areas four orders of magnitude larger at the same bias. This boost in the extractedcurrent is a consequence of the destabilization of the gas phase. The grand potentialof surface nanobubbles shows they can not reach a thermodynamically stable stateon supports below 2 nm. As a result, the electroactive area becomes accessible to thesolution and the current turns out to be sensitive to the electrode radius. In this way,our simulations establish that there is an optimal size for the nanoelectrodes, in betweenthe single-atom and ∼3 nm, that optimizes the gas production. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/264039 Gadea, Esteban David; Pérez Sirkin, Yamila Anahí; Molinero, Valeria; Scherlis Perel, Damian Ariel; The smallest electrochemical bubbles; National Academy of Sciences; Proceedings of the National Academy of Sciences of The United States of America; 121; 41; 10-2024; 1-7 0027-8424 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/264039 |
identifier_str_mv |
Gadea, Esteban David; Pérez Sirkin, Yamila Anahí; Molinero, Valeria; Scherlis Perel, Damian Ariel; The smallest electrochemical bubbles; National Academy of Sciences; Proceedings of the National Academy of Sciences of The United States of America; 121; 41; 10-2024; 1-7 0027-8424 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://pnas.org/doi/10.1073/pnas.2406956121 info:eu-repo/semantics/altIdentifier/doi/10.1073/pnas.2406956121 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
National Academy of Sciences |
publisher.none.fl_str_mv |
National Academy of Sciences |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613696207192064 |
score |
13.070432 |