The smallest electrochemical bubbles

Autores
Gadea, Esteban David; Pérez Sirkin, Yamila Anahí; Molinero, Valeria; Scherlis Perel, Damian Ariel
Año de publicación
2024
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Many of the relevant electrochemical processes in the context of catalysis or energyconversion and storage, entail the production of gases. This often implicates thenucleation of bubbles at the interface, with the concomitant blockage of theelectroactive area leading to overpotentials and Ohmic drop. Nanoelectrodes have beenenvisioned as assets to revert this effect, by inhibiting bubble formation. Experimentsshow, however, that nanobubbles nucleate and attach to nanoscale electrodes, imposinga limit to the current, which turns out to be independent of size and applied potential ina wide range from 3 nm to tenths of microns. Here we investigate the potential-currentresponse for disk electrodes of diameters down to a single-atom, employing molecularsimulations including electrochemical generation of gas. Our analysis reveals thatnanoelectrodes of 1 nm can offer twice as much current as that delivered by electrodeswith areas four orders of magnitude larger at the same bias. This boost in the extractedcurrent is a consequence of the destabilization of the gas phase. The grand potentialof surface nanobubbles shows they can not reach a thermodynamically stable stateon supports below 2 nm. As a result, the electroactive area becomes accessible to thesolution and the current turns out to be sensitive to the electrode radius. In this way,our simulations establish that there is an optimal size for the nanoelectrodes, in betweenthe single-atom and ∼3 nm, that optimizes the gas production.
Fil: Gadea, Esteban David. University of Utah; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina
Fil: Pérez Sirkin, Yamila Anahí. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina
Fil: Molinero, Valeria. University of Utah; Estados Unidos
Fil: Scherlis Perel, Damian Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; Argentina
Materia
ELECTROCHEMISTRY
NANOELECTRODES
CATALYSIS
MD-kMC
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/264039

id CONICETDig_094695f3a2d9499e155239209a927559
oai_identifier_str oai:ri.conicet.gov.ar:11336/264039
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling The smallest electrochemical bubblesGadea, Esteban DavidPérez Sirkin, Yamila AnahíMolinero, ValeriaScherlis Perel, Damian ArielELECTROCHEMISTRYNANOELECTRODESCATALYSISMD-kMChttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Many of the relevant electrochemical processes in the context of catalysis or energyconversion and storage, entail the production of gases. This often implicates thenucleation of bubbles at the interface, with the concomitant blockage of theelectroactive area leading to overpotentials and Ohmic drop. Nanoelectrodes have beenenvisioned as assets to revert this effect, by inhibiting bubble formation. Experimentsshow, however, that nanobubbles nucleate and attach to nanoscale electrodes, imposinga limit to the current, which turns out to be independent of size and applied potential ina wide range from 3 nm to tenths of microns. Here we investigate the potential-currentresponse for disk electrodes of diameters down to a single-atom, employing molecularsimulations including electrochemical generation of gas. Our analysis reveals thatnanoelectrodes of 1 nm can offer twice as much current as that delivered by electrodeswith areas four orders of magnitude larger at the same bias. This boost in the extractedcurrent is a consequence of the destabilization of the gas phase. The grand potentialof surface nanobubbles shows they can not reach a thermodynamically stable stateon supports below 2 nm. As a result, the electroactive area becomes accessible to thesolution and the current turns out to be sensitive to the electrode radius. In this way,our simulations establish that there is an optimal size for the nanoelectrodes, in betweenthe single-atom and ∼3 nm, that optimizes the gas production.Fil: Gadea, Esteban David. University of Utah; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaFil: Pérez Sirkin, Yamila Anahí. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaFil: Molinero, Valeria. University of Utah; Estados UnidosFil: Scherlis Perel, Damian Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; ArgentinaNational Academy of Sciences2024-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/264039Gadea, Esteban David; Pérez Sirkin, Yamila Anahí; Molinero, Valeria; Scherlis Perel, Damian Ariel; The smallest electrochemical bubbles; National Academy of Sciences; Proceedings of the National Academy of Sciences of The United States of America; 121; 41; 10-2024; 1-70027-8424CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://pnas.org/doi/10.1073/pnas.2406956121info:eu-repo/semantics/altIdentifier/doi/10.1073/pnas.2406956121info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:56:29Zoai:ri.conicet.gov.ar:11336/264039instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:56:29.353CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv The smallest electrochemical bubbles
title The smallest electrochemical bubbles
spellingShingle The smallest electrochemical bubbles
Gadea, Esteban David
ELECTROCHEMISTRY
NANOELECTRODES
CATALYSIS
MD-kMC
title_short The smallest electrochemical bubbles
title_full The smallest electrochemical bubbles
title_fullStr The smallest electrochemical bubbles
title_full_unstemmed The smallest electrochemical bubbles
title_sort The smallest electrochemical bubbles
dc.creator.none.fl_str_mv Gadea, Esteban David
Pérez Sirkin, Yamila Anahí
Molinero, Valeria
Scherlis Perel, Damian Ariel
author Gadea, Esteban David
author_facet Gadea, Esteban David
Pérez Sirkin, Yamila Anahí
Molinero, Valeria
Scherlis Perel, Damian Ariel
author_role author
author2 Pérez Sirkin, Yamila Anahí
Molinero, Valeria
Scherlis Perel, Damian Ariel
author2_role author
author
author
dc.subject.none.fl_str_mv ELECTROCHEMISTRY
NANOELECTRODES
CATALYSIS
MD-kMC
topic ELECTROCHEMISTRY
NANOELECTRODES
CATALYSIS
MD-kMC
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Many of the relevant electrochemical processes in the context of catalysis or energyconversion and storage, entail the production of gases. This often implicates thenucleation of bubbles at the interface, with the concomitant blockage of theelectroactive area leading to overpotentials and Ohmic drop. Nanoelectrodes have beenenvisioned as assets to revert this effect, by inhibiting bubble formation. Experimentsshow, however, that nanobubbles nucleate and attach to nanoscale electrodes, imposinga limit to the current, which turns out to be independent of size and applied potential ina wide range from 3 nm to tenths of microns. Here we investigate the potential-currentresponse for disk electrodes of diameters down to a single-atom, employing molecularsimulations including electrochemical generation of gas. Our analysis reveals thatnanoelectrodes of 1 nm can offer twice as much current as that delivered by electrodeswith areas four orders of magnitude larger at the same bias. This boost in the extractedcurrent is a consequence of the destabilization of the gas phase. The grand potentialof surface nanobubbles shows they can not reach a thermodynamically stable stateon supports below 2 nm. As a result, the electroactive area becomes accessible to thesolution and the current turns out to be sensitive to the electrode radius. In this way,our simulations establish that there is an optimal size for the nanoelectrodes, in betweenthe single-atom and ∼3 nm, that optimizes the gas production.
Fil: Gadea, Esteban David. University of Utah; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina
Fil: Pérez Sirkin, Yamila Anahí. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina
Fil: Molinero, Valeria. University of Utah; Estados Unidos
Fil: Scherlis Perel, Damian Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; Argentina
description Many of the relevant electrochemical processes in the context of catalysis or energyconversion and storage, entail the production of gases. This often implicates thenucleation of bubbles at the interface, with the concomitant blockage of theelectroactive area leading to overpotentials and Ohmic drop. Nanoelectrodes have beenenvisioned as assets to revert this effect, by inhibiting bubble formation. Experimentsshow, however, that nanobubbles nucleate and attach to nanoscale electrodes, imposinga limit to the current, which turns out to be independent of size and applied potential ina wide range from 3 nm to tenths of microns. Here we investigate the potential-currentresponse for disk electrodes of diameters down to a single-atom, employing molecularsimulations including electrochemical generation of gas. Our analysis reveals thatnanoelectrodes of 1 nm can offer twice as much current as that delivered by electrodeswith areas four orders of magnitude larger at the same bias. This boost in the extractedcurrent is a consequence of the destabilization of the gas phase. The grand potentialof surface nanobubbles shows they can not reach a thermodynamically stable stateon supports below 2 nm. As a result, the electroactive area becomes accessible to thesolution and the current turns out to be sensitive to the electrode radius. In this way,our simulations establish that there is an optimal size for the nanoelectrodes, in betweenthe single-atom and ∼3 nm, that optimizes the gas production.
publishDate 2024
dc.date.none.fl_str_mv 2024-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/264039
Gadea, Esteban David; Pérez Sirkin, Yamila Anahí; Molinero, Valeria; Scherlis Perel, Damian Ariel; The smallest electrochemical bubbles; National Academy of Sciences; Proceedings of the National Academy of Sciences of The United States of America; 121; 41; 10-2024; 1-7
0027-8424
CONICET Digital
CONICET
url http://hdl.handle.net/11336/264039
identifier_str_mv Gadea, Esteban David; Pérez Sirkin, Yamila Anahí; Molinero, Valeria; Scherlis Perel, Damian Ariel; The smallest electrochemical bubbles; National Academy of Sciences; Proceedings of the National Academy of Sciences of The United States of America; 121; 41; 10-2024; 1-7
0027-8424
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://pnas.org/doi/10.1073/pnas.2406956121
info:eu-repo/semantics/altIdentifier/doi/10.1073/pnas.2406956121
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv National Academy of Sciences
publisher.none.fl_str_mv National Academy of Sciences
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613696207192064
score 13.070432