Stereo matching through squeeze deep neural networks

Autores
Caffaratti, Gabriel Dario; Marchetta, Martin G.; Forradellas, Raymundo Quilez
Año de publicación
2019
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Visual depth recognition through Stereo Matching is an active field of research due to the numerous applications in robotics, autonomous driving, user interfaces, etc. Multiple techniques have been developed in the last two decades to achieve accurate disparity maps in short time. With the arrival of Deep Leaning architectures, different fields of Artificial Vision, but mainly on image recognition, have achieved a great progress due to their easier training capabilities and reduction of parameters. This type of networks brought the attention of the Stereo Matching researchers who successfully applied the same concept to generate disparity maps. Even though multiple approaches have been taken towards the minimization of the execution time and errors in the results, most of the time the number of parameters of the networks is neither taken into consideration nor optimized. Inspired on the Squeeze-Nets developed for image recognition, we developed a Stereo Matching Squeeze neural network architecture capable of providing disparity maps with a highly reduced network size without a significant impact on quality and execution time compared with state of the art architectures. In addition, with the purpose of improving the quality of the solution and get solutions closer to real time, an extra refinement module is proposed and several tests are performed using different input size reductions.
Fil: Caffaratti, Gabriel Dario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Facultad de Ingeniería; Argentina
Fil: Marchetta, Martin G.. Universidad Nacional de Cuyo. Facultad de Ingeniería; Argentina
Fil: Forradellas, Raymundo Quilez. Universidad Nacional de Cuyo. Facultad de Ingeniería; Argentina
Materia
ARTIFICIAL INTELLIGENCE
ARTIFICIAL VISION
DEEP LEARNING
DISPARITY MAPS
SQUEEZE NETS
STEREO MATCHING
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/131942

id CONICETDig_c234b4e3e2e4240de2ad252f5ef3d9c9
oai_identifier_str oai:ri.conicet.gov.ar:11336/131942
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Stereo matching through squeeze deep neural networksCaffaratti, Gabriel DarioMarchetta, Martin G.Forradellas, Raymundo QuilezARTIFICIAL INTELLIGENCEARTIFICIAL VISIONDEEP LEARNINGDISPARITY MAPSSQUEEZE NETSSTEREO MATCHINGhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Visual depth recognition through Stereo Matching is an active field of research due to the numerous applications in robotics, autonomous driving, user interfaces, etc. Multiple techniques have been developed in the last two decades to achieve accurate disparity maps in short time. With the arrival of Deep Leaning architectures, different fields of Artificial Vision, but mainly on image recognition, have achieved a great progress due to their easier training capabilities and reduction of parameters. This type of networks brought the attention of the Stereo Matching researchers who successfully applied the same concept to generate disparity maps. Even though multiple approaches have been taken towards the minimization of the execution time and errors in the results, most of the time the number of parameters of the networks is neither taken into consideration nor optimized. Inspired on the Squeeze-Nets developed for image recognition, we developed a Stereo Matching Squeeze neural network architecture capable of providing disparity maps with a highly reduced network size without a significant impact on quality and execution time compared with state of the art architectures. In addition, with the purpose of improving the quality of the solution and get solutions closer to real time, an extra refinement module is proposed and several tests are performed using different input size reductions.Fil: Caffaratti, Gabriel Dario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Facultad de Ingeniería; ArgentinaFil: Marchetta, Martin G.. Universidad Nacional de Cuyo. Facultad de Ingeniería; ArgentinaFil: Forradellas, Raymundo Quilez. Universidad Nacional de Cuyo. Facultad de Ingeniería; ArgentinaAsociacion Espanola de Inteligencia Artificial2019-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/131942Caffaratti, Gabriel Dario; Marchetta, Martin G.; Forradellas, Raymundo Quilez; Stereo matching through squeeze deep neural networks; Asociacion Espanola de Inteligencia Artificial; Inteligencia Artificial; 22; 63; 2-2019; 16-381137-36011988-3064CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.4114/intartif.vol22iss63pp16-38info:eu-repo/semantics/altIdentifier/url/https://journal.iberamia.org/index.php/intartif/article/view/254info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:20:30Zoai:ri.conicet.gov.ar:11336/131942instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:20:30.949CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Stereo matching through squeeze deep neural networks
title Stereo matching through squeeze deep neural networks
spellingShingle Stereo matching through squeeze deep neural networks
Caffaratti, Gabriel Dario
ARTIFICIAL INTELLIGENCE
ARTIFICIAL VISION
DEEP LEARNING
DISPARITY MAPS
SQUEEZE NETS
STEREO MATCHING
title_short Stereo matching through squeeze deep neural networks
title_full Stereo matching through squeeze deep neural networks
title_fullStr Stereo matching through squeeze deep neural networks
title_full_unstemmed Stereo matching through squeeze deep neural networks
title_sort Stereo matching through squeeze deep neural networks
dc.creator.none.fl_str_mv Caffaratti, Gabriel Dario
Marchetta, Martin G.
Forradellas, Raymundo Quilez
author Caffaratti, Gabriel Dario
author_facet Caffaratti, Gabriel Dario
Marchetta, Martin G.
Forradellas, Raymundo Quilez
author_role author
author2 Marchetta, Martin G.
Forradellas, Raymundo Quilez
author2_role author
author
dc.subject.none.fl_str_mv ARTIFICIAL INTELLIGENCE
ARTIFICIAL VISION
DEEP LEARNING
DISPARITY MAPS
SQUEEZE NETS
STEREO MATCHING
topic ARTIFICIAL INTELLIGENCE
ARTIFICIAL VISION
DEEP LEARNING
DISPARITY MAPS
SQUEEZE NETS
STEREO MATCHING
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Visual depth recognition through Stereo Matching is an active field of research due to the numerous applications in robotics, autonomous driving, user interfaces, etc. Multiple techniques have been developed in the last two decades to achieve accurate disparity maps in short time. With the arrival of Deep Leaning architectures, different fields of Artificial Vision, but mainly on image recognition, have achieved a great progress due to their easier training capabilities and reduction of parameters. This type of networks brought the attention of the Stereo Matching researchers who successfully applied the same concept to generate disparity maps. Even though multiple approaches have been taken towards the minimization of the execution time and errors in the results, most of the time the number of parameters of the networks is neither taken into consideration nor optimized. Inspired on the Squeeze-Nets developed for image recognition, we developed a Stereo Matching Squeeze neural network architecture capable of providing disparity maps with a highly reduced network size without a significant impact on quality and execution time compared with state of the art architectures. In addition, with the purpose of improving the quality of the solution and get solutions closer to real time, an extra refinement module is proposed and several tests are performed using different input size reductions.
Fil: Caffaratti, Gabriel Dario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Facultad de Ingeniería; Argentina
Fil: Marchetta, Martin G.. Universidad Nacional de Cuyo. Facultad de Ingeniería; Argentina
Fil: Forradellas, Raymundo Quilez. Universidad Nacional de Cuyo. Facultad de Ingeniería; Argentina
description Visual depth recognition through Stereo Matching is an active field of research due to the numerous applications in robotics, autonomous driving, user interfaces, etc. Multiple techniques have been developed in the last two decades to achieve accurate disparity maps in short time. With the arrival of Deep Leaning architectures, different fields of Artificial Vision, but mainly on image recognition, have achieved a great progress due to their easier training capabilities and reduction of parameters. This type of networks brought the attention of the Stereo Matching researchers who successfully applied the same concept to generate disparity maps. Even though multiple approaches have been taken towards the minimization of the execution time and errors in the results, most of the time the number of parameters of the networks is neither taken into consideration nor optimized. Inspired on the Squeeze-Nets developed for image recognition, we developed a Stereo Matching Squeeze neural network architecture capable of providing disparity maps with a highly reduced network size without a significant impact on quality and execution time compared with state of the art architectures. In addition, with the purpose of improving the quality of the solution and get solutions closer to real time, an extra refinement module is proposed and several tests are performed using different input size reductions.
publishDate 2019
dc.date.none.fl_str_mv 2019-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/131942
Caffaratti, Gabriel Dario; Marchetta, Martin G.; Forradellas, Raymundo Quilez; Stereo matching through squeeze deep neural networks; Asociacion Espanola de Inteligencia Artificial; Inteligencia Artificial; 22; 63; 2-2019; 16-38
1137-3601
1988-3064
CONICET Digital
CONICET
url http://hdl.handle.net/11336/131942
identifier_str_mv Caffaratti, Gabriel Dario; Marchetta, Martin G.; Forradellas, Raymundo Quilez; Stereo matching through squeeze deep neural networks; Asociacion Espanola de Inteligencia Artificial; Inteligencia Artificial; 22; 63; 2-2019; 16-38
1137-3601
1988-3064
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.4114/intartif.vol22iss63pp16-38
info:eu-repo/semantics/altIdentifier/url/https://journal.iberamia.org/index.php/intartif/article/view/254
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Asociacion Espanola de Inteligencia Artificial
publisher.none.fl_str_mv Asociacion Espanola de Inteligencia Artificial
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842981120215351296
score 12.48226