Stereo matching through squeeze deep neural networks
- Autores
- Caffaratti, Gabriel Dario; Marchetta, Martin G.; Forradellas, Raymundo Quilez
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Visual depth recognition through Stereo Matching is an active field of research due to the numerous applications in robotics, autonomous driving, user interfaces, etc. Multiple techniques have been developed in the last two decades to achieve accurate disparity maps in short time. With the arrival of Deep Leaning architectures, different fields of Artificial Vision, but mainly on image recognition, have achieved a great progress due to their easier training capabilities and reduction of parameters. This type of networks brought the attention of the Stereo Matching researchers who successfully applied the same concept to generate disparity maps. Even though multiple approaches have been taken towards the minimization of the execution time and errors in the results, most of the time the number of parameters of the networks is neither taken into consideration nor optimized. Inspired on the Squeeze-Nets developed for image recognition, we developed a Stereo Matching Squeeze neural network architecture capable of providing disparity maps with a highly reduced network size without a significant impact on quality and execution time compared with state of the art architectures. In addition, with the purpose of improving the quality of the solution and get solutions closer to real time, an extra refinement module is proposed and several tests are performed using different input size reductions.
Fil: Caffaratti, Gabriel Dario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Facultad de Ingeniería; Argentina
Fil: Marchetta, Martin G.. Universidad Nacional de Cuyo. Facultad de Ingeniería; Argentina
Fil: Forradellas, Raymundo Quilez. Universidad Nacional de Cuyo. Facultad de Ingeniería; Argentina - Materia
-
ARTIFICIAL INTELLIGENCE
ARTIFICIAL VISION
DEEP LEARNING
DISPARITY MAPS
SQUEEZE NETS
STEREO MATCHING - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/131942
Ver los metadatos del registro completo
id |
CONICETDig_c234b4e3e2e4240de2ad252f5ef3d9c9 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/131942 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Stereo matching through squeeze deep neural networksCaffaratti, Gabriel DarioMarchetta, Martin G.Forradellas, Raymundo QuilezARTIFICIAL INTELLIGENCEARTIFICIAL VISIONDEEP LEARNINGDISPARITY MAPSSQUEEZE NETSSTEREO MATCHINGhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Visual depth recognition through Stereo Matching is an active field of research due to the numerous applications in robotics, autonomous driving, user interfaces, etc. Multiple techniques have been developed in the last two decades to achieve accurate disparity maps in short time. With the arrival of Deep Leaning architectures, different fields of Artificial Vision, but mainly on image recognition, have achieved a great progress due to their easier training capabilities and reduction of parameters. This type of networks brought the attention of the Stereo Matching researchers who successfully applied the same concept to generate disparity maps. Even though multiple approaches have been taken towards the minimization of the execution time and errors in the results, most of the time the number of parameters of the networks is neither taken into consideration nor optimized. Inspired on the Squeeze-Nets developed for image recognition, we developed a Stereo Matching Squeeze neural network architecture capable of providing disparity maps with a highly reduced network size without a significant impact on quality and execution time compared with state of the art architectures. In addition, with the purpose of improving the quality of the solution and get solutions closer to real time, an extra refinement module is proposed and several tests are performed using different input size reductions.Fil: Caffaratti, Gabriel Dario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Facultad de Ingeniería; ArgentinaFil: Marchetta, Martin G.. Universidad Nacional de Cuyo. Facultad de Ingeniería; ArgentinaFil: Forradellas, Raymundo Quilez. Universidad Nacional de Cuyo. Facultad de Ingeniería; ArgentinaAsociacion Espanola de Inteligencia Artificial2019-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/131942Caffaratti, Gabriel Dario; Marchetta, Martin G.; Forradellas, Raymundo Quilez; Stereo matching through squeeze deep neural networks; Asociacion Espanola de Inteligencia Artificial; Inteligencia Artificial; 22; 63; 2-2019; 16-381137-36011988-3064CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.4114/intartif.vol22iss63pp16-38info:eu-repo/semantics/altIdentifier/url/https://journal.iberamia.org/index.php/intartif/article/view/254info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:20:30Zoai:ri.conicet.gov.ar:11336/131942instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:20:30.949CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Stereo matching through squeeze deep neural networks |
title |
Stereo matching through squeeze deep neural networks |
spellingShingle |
Stereo matching through squeeze deep neural networks Caffaratti, Gabriel Dario ARTIFICIAL INTELLIGENCE ARTIFICIAL VISION DEEP LEARNING DISPARITY MAPS SQUEEZE NETS STEREO MATCHING |
title_short |
Stereo matching through squeeze deep neural networks |
title_full |
Stereo matching through squeeze deep neural networks |
title_fullStr |
Stereo matching through squeeze deep neural networks |
title_full_unstemmed |
Stereo matching through squeeze deep neural networks |
title_sort |
Stereo matching through squeeze deep neural networks |
dc.creator.none.fl_str_mv |
Caffaratti, Gabriel Dario Marchetta, Martin G. Forradellas, Raymundo Quilez |
author |
Caffaratti, Gabriel Dario |
author_facet |
Caffaratti, Gabriel Dario Marchetta, Martin G. Forradellas, Raymundo Quilez |
author_role |
author |
author2 |
Marchetta, Martin G. Forradellas, Raymundo Quilez |
author2_role |
author author |
dc.subject.none.fl_str_mv |
ARTIFICIAL INTELLIGENCE ARTIFICIAL VISION DEEP LEARNING DISPARITY MAPS SQUEEZE NETS STEREO MATCHING |
topic |
ARTIFICIAL INTELLIGENCE ARTIFICIAL VISION DEEP LEARNING DISPARITY MAPS SQUEEZE NETS STEREO MATCHING |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Visual depth recognition through Stereo Matching is an active field of research due to the numerous applications in robotics, autonomous driving, user interfaces, etc. Multiple techniques have been developed in the last two decades to achieve accurate disparity maps in short time. With the arrival of Deep Leaning architectures, different fields of Artificial Vision, but mainly on image recognition, have achieved a great progress due to their easier training capabilities and reduction of parameters. This type of networks brought the attention of the Stereo Matching researchers who successfully applied the same concept to generate disparity maps. Even though multiple approaches have been taken towards the minimization of the execution time and errors in the results, most of the time the number of parameters of the networks is neither taken into consideration nor optimized. Inspired on the Squeeze-Nets developed for image recognition, we developed a Stereo Matching Squeeze neural network architecture capable of providing disparity maps with a highly reduced network size without a significant impact on quality and execution time compared with state of the art architectures. In addition, with the purpose of improving the quality of the solution and get solutions closer to real time, an extra refinement module is proposed and several tests are performed using different input size reductions. Fil: Caffaratti, Gabriel Dario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Facultad de Ingeniería; Argentina Fil: Marchetta, Martin G.. Universidad Nacional de Cuyo. Facultad de Ingeniería; Argentina Fil: Forradellas, Raymundo Quilez. Universidad Nacional de Cuyo. Facultad de Ingeniería; Argentina |
description |
Visual depth recognition through Stereo Matching is an active field of research due to the numerous applications in robotics, autonomous driving, user interfaces, etc. Multiple techniques have been developed in the last two decades to achieve accurate disparity maps in short time. With the arrival of Deep Leaning architectures, different fields of Artificial Vision, but mainly on image recognition, have achieved a great progress due to their easier training capabilities and reduction of parameters. This type of networks brought the attention of the Stereo Matching researchers who successfully applied the same concept to generate disparity maps. Even though multiple approaches have been taken towards the minimization of the execution time and errors in the results, most of the time the number of parameters of the networks is neither taken into consideration nor optimized. Inspired on the Squeeze-Nets developed for image recognition, we developed a Stereo Matching Squeeze neural network architecture capable of providing disparity maps with a highly reduced network size without a significant impact on quality and execution time compared with state of the art architectures. In addition, with the purpose of improving the quality of the solution and get solutions closer to real time, an extra refinement module is proposed and several tests are performed using different input size reductions. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/131942 Caffaratti, Gabriel Dario; Marchetta, Martin G.; Forradellas, Raymundo Quilez; Stereo matching through squeeze deep neural networks; Asociacion Espanola de Inteligencia Artificial; Inteligencia Artificial; 22; 63; 2-2019; 16-38 1137-3601 1988-3064 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/131942 |
identifier_str_mv |
Caffaratti, Gabriel Dario; Marchetta, Martin G.; Forradellas, Raymundo Quilez; Stereo matching through squeeze deep neural networks; Asociacion Espanola de Inteligencia Artificial; Inteligencia Artificial; 22; 63; 2-2019; 16-38 1137-3601 1988-3064 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.4114/intartif.vol22iss63pp16-38 info:eu-repo/semantics/altIdentifier/url/https://journal.iberamia.org/index.php/intartif/article/view/254 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Asociacion Espanola de Inteligencia Artificial |
publisher.none.fl_str_mv |
Asociacion Espanola de Inteligencia Artificial |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842981120215351296 |
score |
12.48226 |