Cropland Net Ecosystem Exchange Estimation for the Inland Pampas (Argentina) Using EVI, Land Cover Maps, and Eddy Covariance Fluxes
- Autores
- Marconato, Ulises Mariano; Fernandez, Roberto Julio; Posse, Gabriela
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Estimations of Net Ecosystem Exchange (NEE) are crucial to assess the carbon sequestration/carbon source capacity of agricultural systems. Although several global models have been built to describe carbon flux patterns based on flux tower data, South American ecosystems (and croplands in particular) are underrepresented in the databases used to calibrate these models, leading to large uncertainties in regional and global NEE estimation. Despite the fact that almost half of the land surface is used worldwide for agricultural activities, these models still do not include variables related to cropland management. Using enhanced vegetation index (EVI) derived from MODIS imagery (250 m) and monthly CO2 exchange from a 9-year record of an eddy covariance (EC) flux tower in a crop field in the Inland Pampas region, we developed regression models to predict monthly NEE. We tested whether including a term for crop identity/land cover as a categorical variable (maize, soybean, wheat, and fallow) could improve model capability in capturing monthly NEE dynamics. NEE measured at the flux tower site was scaled to croplands across the Inland Pampa using crop-type maps, from which annual NEE maps were generated for the 2018–2019, 2019–2020, and 2020–2021 agricultural campaigns. The model based solely on EVI showed to be a good predictor of monthly NEE for the study region (r2 = 0.78), but model adjustment was improved by including a term for crop identity (r2 = 0.83). A second set of maps was generated taking into account carbon exports during harvest to estimate Net Biome Productivity (NBP) at the county level. Crops across the region as a whole acted as a carbon sink during the three studied campaigns, although with highly heterogeneous spatial and temporal patterns. Between 60% and 80% of the carbon sequestered was exported during harvest, a large decrease from the carbon sequestration capacity estimated using just NEE, which further decreased if fossil carbon emissions from agricultural supplies are taken into account. Estimates presented in this study are a first step towards upscaling carbon fluxes at the regional scale in a South American cropland area, and could help to improve regional to global estimations of carbon fluxes and refine national greenhouse gas (GHG) inventories.
Fil: Marconato, Ulises Mariano. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación de Recursos Naturales. Instituto de Clima y Agua; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina
Fil: Fernandez, Roberto Julio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina
Fil: Posse, Gabriela. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación de Recursos Naturales. Instituto de Clima y Agua; Argentina - Materia
-
NET BIOME PRODUCTIVITY
MODIS
UPSCALING
CARBON FLUXES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/201781
Ver los metadatos del registro completo
id |
CONICETDig_0709467561ce4b7019346187d6398b24 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/201781 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Cropland Net Ecosystem Exchange Estimation for the Inland Pampas (Argentina) Using EVI, Land Cover Maps, and Eddy Covariance FluxesMarconato, Ulises MarianoFernandez, Roberto JulioPosse, GabrielaNET BIOME PRODUCTIVITYMODISUPSCALINGCARBON FLUXEShttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1Estimations of Net Ecosystem Exchange (NEE) are crucial to assess the carbon sequestration/carbon source capacity of agricultural systems. Although several global models have been built to describe carbon flux patterns based on flux tower data, South American ecosystems (and croplands in particular) are underrepresented in the databases used to calibrate these models, leading to large uncertainties in regional and global NEE estimation. Despite the fact that almost half of the land surface is used worldwide for agricultural activities, these models still do not include variables related to cropland management. Using enhanced vegetation index (EVI) derived from MODIS imagery (250 m) and monthly CO2 exchange from a 9-year record of an eddy covariance (EC) flux tower in a crop field in the Inland Pampas region, we developed regression models to predict monthly NEE. We tested whether including a term for crop identity/land cover as a categorical variable (maize, soybean, wheat, and fallow) could improve model capability in capturing monthly NEE dynamics. NEE measured at the flux tower site was scaled to croplands across the Inland Pampa using crop-type maps, from which annual NEE maps were generated for the 2018–2019, 2019–2020, and 2020–2021 agricultural campaigns. The model based solely on EVI showed to be a good predictor of monthly NEE for the study region (r2 = 0.78), but model adjustment was improved by including a term for crop identity (r2 = 0.83). A second set of maps was generated taking into account carbon exports during harvest to estimate Net Biome Productivity (NBP) at the county level. Crops across the region as a whole acted as a carbon sink during the three studied campaigns, although with highly heterogeneous spatial and temporal patterns. Between 60% and 80% of the carbon sequestered was exported during harvest, a large decrease from the carbon sequestration capacity estimated using just NEE, which further decreased if fossil carbon emissions from agricultural supplies are taken into account. Estimates presented in this study are a first step towards upscaling carbon fluxes at the regional scale in a South American cropland area, and could help to improve regional to global estimations of carbon fluxes and refine national greenhouse gas (GHG) inventories.Fil: Marconato, Ulises Mariano. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación de Recursos Naturales. Instituto de Clima y Agua; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; ArgentinaFil: Fernandez, Roberto Julio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; ArgentinaFil: Posse, Gabriela. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación de Recursos Naturales. Instituto de Clima y Agua; ArgentinaFrontiers Media2022-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/201781Marconato, Ulises Mariano; Fernandez, Roberto Julio; Posse, Gabriela; Cropland Net Ecosystem Exchange Estimation for the Inland Pampas (Argentina) Using EVI, Land Cover Maps, and Eddy Covariance Fluxes; Frontiers Media; Frontiers in Soil Science; 2; 6-2022; 1-122673-8619CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.frontiersin.org/articles/10.3389/fsoil.2022.903544/fullinfo:eu-repo/semantics/altIdentifier/doi/10.3389/fsoil.2022.903544info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-17T11:38:55Zoai:ri.conicet.gov.ar:11336/201781instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-17 11:38:56.092CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Cropland Net Ecosystem Exchange Estimation for the Inland Pampas (Argentina) Using EVI, Land Cover Maps, and Eddy Covariance Fluxes |
title |
Cropland Net Ecosystem Exchange Estimation for the Inland Pampas (Argentina) Using EVI, Land Cover Maps, and Eddy Covariance Fluxes |
spellingShingle |
Cropland Net Ecosystem Exchange Estimation for the Inland Pampas (Argentina) Using EVI, Land Cover Maps, and Eddy Covariance Fluxes Marconato, Ulises Mariano NET BIOME PRODUCTIVITY MODIS UPSCALING CARBON FLUXES |
title_short |
Cropland Net Ecosystem Exchange Estimation for the Inland Pampas (Argentina) Using EVI, Land Cover Maps, and Eddy Covariance Fluxes |
title_full |
Cropland Net Ecosystem Exchange Estimation for the Inland Pampas (Argentina) Using EVI, Land Cover Maps, and Eddy Covariance Fluxes |
title_fullStr |
Cropland Net Ecosystem Exchange Estimation for the Inland Pampas (Argentina) Using EVI, Land Cover Maps, and Eddy Covariance Fluxes |
title_full_unstemmed |
Cropland Net Ecosystem Exchange Estimation for the Inland Pampas (Argentina) Using EVI, Land Cover Maps, and Eddy Covariance Fluxes |
title_sort |
Cropland Net Ecosystem Exchange Estimation for the Inland Pampas (Argentina) Using EVI, Land Cover Maps, and Eddy Covariance Fluxes |
dc.creator.none.fl_str_mv |
Marconato, Ulises Mariano Fernandez, Roberto Julio Posse, Gabriela |
author |
Marconato, Ulises Mariano |
author_facet |
Marconato, Ulises Mariano Fernandez, Roberto Julio Posse, Gabriela |
author_role |
author |
author2 |
Fernandez, Roberto Julio Posse, Gabriela |
author2_role |
author author |
dc.subject.none.fl_str_mv |
NET BIOME PRODUCTIVITY MODIS UPSCALING CARBON FLUXES |
topic |
NET BIOME PRODUCTIVITY MODIS UPSCALING CARBON FLUXES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Estimations of Net Ecosystem Exchange (NEE) are crucial to assess the carbon sequestration/carbon source capacity of agricultural systems. Although several global models have been built to describe carbon flux patterns based on flux tower data, South American ecosystems (and croplands in particular) are underrepresented in the databases used to calibrate these models, leading to large uncertainties in regional and global NEE estimation. Despite the fact that almost half of the land surface is used worldwide for agricultural activities, these models still do not include variables related to cropland management. Using enhanced vegetation index (EVI) derived from MODIS imagery (250 m) and monthly CO2 exchange from a 9-year record of an eddy covariance (EC) flux tower in a crop field in the Inland Pampas region, we developed regression models to predict monthly NEE. We tested whether including a term for crop identity/land cover as a categorical variable (maize, soybean, wheat, and fallow) could improve model capability in capturing monthly NEE dynamics. NEE measured at the flux tower site was scaled to croplands across the Inland Pampa using crop-type maps, from which annual NEE maps were generated for the 2018–2019, 2019–2020, and 2020–2021 agricultural campaigns. The model based solely on EVI showed to be a good predictor of monthly NEE for the study region (r2 = 0.78), but model adjustment was improved by including a term for crop identity (r2 = 0.83). A second set of maps was generated taking into account carbon exports during harvest to estimate Net Biome Productivity (NBP) at the county level. Crops across the region as a whole acted as a carbon sink during the three studied campaigns, although with highly heterogeneous spatial and temporal patterns. Between 60% and 80% of the carbon sequestered was exported during harvest, a large decrease from the carbon sequestration capacity estimated using just NEE, which further decreased if fossil carbon emissions from agricultural supplies are taken into account. Estimates presented in this study are a first step towards upscaling carbon fluxes at the regional scale in a South American cropland area, and could help to improve regional to global estimations of carbon fluxes and refine national greenhouse gas (GHG) inventories. Fil: Marconato, Ulises Mariano. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación de Recursos Naturales. Instituto de Clima y Agua; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina Fil: Fernandez, Roberto Julio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina Fil: Posse, Gabriela. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación de Recursos Naturales. Instituto de Clima y Agua; Argentina |
description |
Estimations of Net Ecosystem Exchange (NEE) are crucial to assess the carbon sequestration/carbon source capacity of agricultural systems. Although several global models have been built to describe carbon flux patterns based on flux tower data, South American ecosystems (and croplands in particular) are underrepresented in the databases used to calibrate these models, leading to large uncertainties in regional and global NEE estimation. Despite the fact that almost half of the land surface is used worldwide for agricultural activities, these models still do not include variables related to cropland management. Using enhanced vegetation index (EVI) derived from MODIS imagery (250 m) and monthly CO2 exchange from a 9-year record of an eddy covariance (EC) flux tower in a crop field in the Inland Pampas region, we developed regression models to predict monthly NEE. We tested whether including a term for crop identity/land cover as a categorical variable (maize, soybean, wheat, and fallow) could improve model capability in capturing monthly NEE dynamics. NEE measured at the flux tower site was scaled to croplands across the Inland Pampa using crop-type maps, from which annual NEE maps were generated for the 2018–2019, 2019–2020, and 2020–2021 agricultural campaigns. The model based solely on EVI showed to be a good predictor of monthly NEE for the study region (r2 = 0.78), but model adjustment was improved by including a term for crop identity (r2 = 0.83). A second set of maps was generated taking into account carbon exports during harvest to estimate Net Biome Productivity (NBP) at the county level. Crops across the region as a whole acted as a carbon sink during the three studied campaigns, although with highly heterogeneous spatial and temporal patterns. Between 60% and 80% of the carbon sequestered was exported during harvest, a large decrease from the carbon sequestration capacity estimated using just NEE, which further decreased if fossil carbon emissions from agricultural supplies are taken into account. Estimates presented in this study are a first step towards upscaling carbon fluxes at the regional scale in a South American cropland area, and could help to improve regional to global estimations of carbon fluxes and refine national greenhouse gas (GHG) inventories. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/201781 Marconato, Ulises Mariano; Fernandez, Roberto Julio; Posse, Gabriela; Cropland Net Ecosystem Exchange Estimation for the Inland Pampas (Argentina) Using EVI, Land Cover Maps, and Eddy Covariance Fluxes; Frontiers Media; Frontiers in Soil Science; 2; 6-2022; 1-12 2673-8619 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/201781 |
identifier_str_mv |
Marconato, Ulises Mariano; Fernandez, Roberto Julio; Posse, Gabriela; Cropland Net Ecosystem Exchange Estimation for the Inland Pampas (Argentina) Using EVI, Land Cover Maps, and Eddy Covariance Fluxes; Frontiers Media; Frontiers in Soil Science; 2; 6-2022; 1-12 2673-8619 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.frontiersin.org/articles/10.3389/fsoil.2022.903544/full info:eu-repo/semantics/altIdentifier/doi/10.3389/fsoil.2022.903544 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Frontiers Media |
publisher.none.fl_str_mv |
Frontiers Media |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1843606746739769344 |
score |
13.000565 |